
Gabriel Konar-Steenberg
K. Shankari
NREL SULI: E-mission Trip Inference System
30 June 2021

Trip Label Inference System » User Interface » Draft 2
Executive Summary

Behind the scenes, a server-side
trip inference algorithm will
produce a data structure that
comprises, for each trip, a list of
label sets with probabilities. This
allows a client-side algorithm to
refine the inference as the user
manually confirms or corrects
labels; it will also aid in analysis
when the user has not confirmed
or corrected labels. To the right
is an example of what this data
structure might look like.

To integrate the inference system into the phone app user interface,
we will make three main changes. First, we display unfilled labels in
red, inferred labels in yellow, and manually filled-out or verified
labels in green. Second, we add a To Label view on the Label
screen that displays only trips that users are expected to manually
provide input on, according to the criteria below. Third, we change
when we notify users as detailed below. We will also make some
smaller UI changes to improve usability, including adding a confirm
button, a feature to label many of the same type of trip at once, and a
map of trips. To the right is a screenshot of progress so far, showing
the red/yellow/green color scheme and the confirm button.

Expectations and notification behavior will be highly configurable to
support many use cases. The basic idea of this configuration is that
for each label category, comprising red labels and yellow labels with
varying degrees of certainty, trip administrators will be able to select
an expectation setting and a notification setting. The user could be
expected to label every trip in a given category, none of them, or
some random sample in between. The user could be notified after
every trip in a given category, at the end of the day, or less frequently.

Study administrators will also be able to configure a “primary mode,” in which user input
expectations are high, and a “secondary mode,” in which less is demanded of the user; the app
can automatically cycle between primary and secondary modes according to a configurable
schedule.

Please see the full proposal for a complete configuration example and many more details. Please
send me any feedback you may have!

Konar-Steenberg 2

User Patterns
When thinking about the design of the system that will attempt to “autofill” trip labels to reduce
the amount of user interaction required, it is useful to contemplate a number of transportation
patterns. Some I have found useful to think about are:

Pattern 1. Carpooling office worker: User drives to and from work at a predictable time
using a predictable route every day; however, 51% of the trips are driving alone and 49%
of the time is carpooling, i.e., driving with others.

Pattern 2. Carpooling, biking office worker: Like Pattern 1 except 35% driving alone, 33%
carpooling, 31% biking.

Pattern 3. Dog walker: Every evening beginning between 7pm and 8pm, user walks their
dog between 0.5 and 2 miles around the neighborhood, starting and ending at their house.

Pattern 4. Plumber: Every weekday between 8am and 5pm, user makes a number of trips,
the first of which is from their house and the last of which is to their house, for which the
labels are mode=drove_alone, replaced=no_travel, purpose=work, except
the last one is purpose=home.

Of course, we should keep in mind that all results point to our only being able to infer labels for
a limited number of trips for each user, and that the less regular a user’s transportation usage is,
the less we will be able to predict — the examples above are towards the easier to predict end of
the spectrum.

Konar-Steenberg 3

Inference Format
The above user patterns make it clear that the inference system will sometimes be able to predict
one of a trip’s labels with a high degree of certainty but have some trouble with the others. For
instance, for the carpooling office worker, the system can quite easily learn which trips have
purpose=work, but it will be hard to distinguish carpooling from driving alone. However, once
the user inputs mode=drove_alone, we can infer replaced=shared_ride. Thus, behind the
scenes, we will build an inference system that gives the phone app a list of possible label
combinations and their probabilities in such a way that we will be able to calculate the most
likely value of a label given information about the other labels on the trip and the other things we
know about the trip. We will also design this inference system to be flexible enough to
accommodate more labels than the three per trip we have been using by default. This inference
system will also allow us to extrapolate nicely when the user does not manually confirm inferred
labels: for instance, for the carpooling office worker, if we had to infer a single mode to ask the
user to confirm, we would say drove_alone as that is technically the majority, but if the user
does not confirm this we can assign 51% of the trips drove_alone and 49% of them
shared_ride for analysis of results.

The screenshot below shows some sample inference results to be transmitted to the user’s phone
for a study that only tracks mode and purpose. Each top-level entry represents a trip; each entry
within that represents possible label tuples for that trip. The first trip is empty: we have no idea
what the labels are. For the second trip, we are 80% sure that the user biked to work and 20%
sure that they walked to the store. To begin with, we would display the labels mode=bike,
purpose=work, but if the user inputs mode=walk, the phone can infer purpose=shopping.
For the third trip, we have some idea about the mode but no idea about the purpose. I have not
yet decided whether this should be considered a valid inference entry. The last trip provides
many options for inference that depend on what the user confirms for one of the labels.

Konar-Steenberg 4

Major Elements of the User Interface Redesign
To implement the trip inference system, we will make the following major changes to the app’s
user interface:

• Instead of showing empty labels in gray and filled-out labels in green, we will show
unfilled labels in red, inferred labels in yellow, and manually filled-out or verified
labels in green.

o This provides an easy way for the user to see what they need to do.
o The red/yellow/green palette is intuitive and fits with the transportation theme.
o Throughout this document, I will refer to red/yellow/green labels with these

definitions in mind.
• For each trip on the Label screen, there will be a small checkmark confirm button; this

button turns all of the yellow labels for that trip green. Users can also confirm individual
fields by manually selecting them and choosing the option from the drop-down menu as
before.

• Currently, the Label screen has three views: Unlabeled, Invalid, and All. Add a
fourth, To Label, and make this the default. The To Label view displays trips that
we expect a user to label (as detailed below) from when they are recognized to when the
user labels them.

o This is one of the major elements of the new scheme to get the user to pay
attention to exactly what they need to pay attention to, no more, no less.

• Add a Batch label button on the Label screen. This lets the user select multiple trips
and apply the same set of labels to all of them.

o Maybe do some tests of whether users actually use this feature.
• Add a button on the Diary screen to show a map of all trips; add options to filter by date.

o For now, I think we should not display clusters of common trips on this map;
we’ll think of clusters as part of the back-end complicatedness that users do not
need to see. Revisit in the future to see if clusters are simple and sane enough that
the user might benefit from seeing them.

• Send notifications only according to the scheme below

So far, the red/yellow/green color-coding and the confirm button have been implemented; see the
screenshot below.

Konar-Steenberg 5

Konar-Steenberg 6

Expectations and Notifications
The rest of the UI redesign consists of clearly communicating what the user is expected to label
and effectively timing push notifications to remind them to do this. The basic idea here is that
trips that users are expected to label appear on the “To Label” screen, that notifications are sent
at configurable times to prompt users to label these trips, and that users are provided with a
textual description of what kinds of trips they will be expected/prompted to label. Though
different types of labels might have different notification settings (e.g., one might configure the
app to notify users about red labels every day but yellow labels only every week), the desired
behavior is that whenever a certain event triggers a label notification, the user labels all of the
trips on the “To Label” screen.

Different use cases might have different needs when it comes to expectations and notifications.
Thus, I’ve designed a highly flexible set of configuration options for individual study
administrators to choose from. Andy Duvall suggested that studies might want to have a primary
data collection period — a short time frame every so often in which users are prompted to label
more or less everything — and a secondary data collection period, the rest of the time, in which
the expectations would be lowered; this is a possibility in the configuration options as well.

Konar-Steenberg 7

Expectation/Notification Configuration
These configuration options are filled out for each study by those running the study. The basic
idea is that for each collection mode, the study may configure:

1. whether we expect the user to manually label various types of red and yellow labels, and
2. how often we should notify the user to do that labeling.

To implement this, for each collection mode, the study may configure a set of rules. Each rule
has three parts: a trigger, which specifies the type of label that activates the rule, an expectation,
which specifies whether or not the user is expected to manually input/confirm the label, and a
notify setting, which specifies when a notification should be sent. The exact options are detailed
below. Boldface denotes the name of a configuration question, italics indicate options, and
square brackets indicate the specified kind of input.

Enable secondary collection mode?

• [yes/no]
If secondary collection mode is enabled:

• Primary collection mode trigger:
o Every [input number] [days/weeks/months] starting on [date]

• Primary collection mode duration:
o [input number] days

For each collection mode (i.e., if secondary collection mode is enabled, have two versions of the
below settings), we can configure how confident the system needs to be in an inferred label
before displaying it instead of keeping the label red:
Inference confidence threshold: [input number]%

Finally, for each collection mode we have a list of rules. There must be a rule triggered by red
labels, there must be a rule triggered by yellow labels, and there can optionally be additional
rules triggered by various confidence levels on yellow labels. The thinking here is that we might
ask for user input for yellow labels only when we are not very confident in our inference. Rules
look like this:

• Trigger: (the type of label that the rule operates on. If a given label falls under multiple
triggers, the most specific trigger governs.)

o Red labels
o Yellow labels
o Yellow labels for which our confidence in our inference is ≤ 99%
o Yellow labels, confidence ≤ 95%
o Yellow labels, confidence ≤ 90%
o Yellow labels, confidence ≤ 85%
o Yellow labels, confidence ≤ 80%
o Yellow labels, confidence ≤ 75%
o Yellow labels, confidence ≤ 50%

Konar-Steenberg 8

o Yellow labels, confidence ≤ 25%
o Yellow labels, confidence ≤ 10%

• Expectation: (whether	or	not	the	user	is	expected	to	label,	and	whether	or	not	we	
consider	sending	a	notification.	If	not	expected,	the	user	may	still	choose	to	label.)

o Label (trip appears in To Label)
o Label random [input number]% of trips (randomly selected trips appear in To

Label)
o Label random [input number] days per week (if multiple rules use this, we try to

overlap days)
o No label (trip does not appear in To Label)

• Notify: (when to notify the user, if at all. If Expectation is “No label,” Notify is
automatically Never. Also, we only notify if there is actually a triggering trip to be
labeled.)

o After each trip
o At the end of each day
o Every [input number] days
o Every [input day of the week]
o Never

Konar-Steenberg 9

Example configuration
That’s a lot of information, so here’s an example that might be a sensible first attempt at a
configuration for the upcoming Colorado pilot. Here, boldface indicates the choices that have
been made, and explanations are in italics.

Enable secondary collection mode?

• Yes
Primary collection mode trigger:

• Every 1 months starting on 2021-09-01
Primary collection mode duration:

• 7 days
Translation: do primary collection mode for the first week of every month.

Primary collection mode:
Inference confidence threshold: 65%

• Trigger: Red labels
o Expectation: Label
o Notify: End of each day

• Trigger: Yellow labels
o Expectation: Label
o Notify: Every Friday

• Trigger: Yellow labels, confidence ≤ 75%
o Expectation: Label
o Notify: End of each day

The thinking here is that we want people to label novel trips frequently enough that they
remember what to fill in, and yellow labels with a low enough probability should be treated as
somewhat novel. For yellow labels with a higher probability, we still want user verification, but
this can happen less frequently if they are the only trips we need to label. Thus, we will try to
wait for red labels or very unsure yellow labels before prompting the user to verify less unsure
yellow labels, but if those trips don’t happen, we’ll have the user verify at the end of the work
week.

Secondary collection mode:
Inference confidence threshold: 55%

• Trigger: Red labels
o Expectation: Label random 2 days per week
o Notify: End of each day

• Trigger: Yellow labels
o Expectation: No label
o Notify: None

Konar-Steenberg 10

• Trigger: Yellow labels, confidence ≤ 95%
o Expectation: Label random 5% of trips
o Notify: End of each day

• Trigger: Yellow labels, confidence ≤ 75%
o Expectation: Label random 2 days per week
o Notify: End of each day

The thinking here is that we want to minimize user interaction as much as possible while still
trying to pick up on any major shifts. Thus, we ask for labels on red trips and somewhat
uncertain yellow trips twice a week and do spot checks on yellow trips we aren't extremely sure
of. Note that even though we have all the notify settings at “End of each day,” this does not
mean the user will get a notification at the end of each day — the user will only get a notification
if the day is one of the random 2 days per week and they have certain label types or if one of the
random 5% of certain trips fell on that day.

Konar-Steenberg 11

Miscellaneous Notes
• One feature not included is the ability to nag users who ignore the first notification. I

think that is okay, because subsequent notifications for new trips should serve that
purpose, but we should keep an eye on whether this would be helpful.

Conclusion

Feel free to provide any feedback on this draft you might have!

