Delayed mode quality control of MOCCA Argo float 3901949

Kamila Walicka

British National Data Centre (BODC), National Oceanography Centre Joseph Proudman Building, 6, Brownlow St, Liverpool L3 5DA

January 27, 2020

Summary

Float is probably drifting from the beginning of the float life. The QC correction has been applied (cycle 1-77), the QC has been set to 2, error 0.01.

WMO number	DM correction
3901949	Drift detected

Table 1: Correction	applied	in delayed	mode.
---------------------	---------	------------	-------

Contents

1	Introduction	3
2	Quality Check of Argo Float Data 2.1 Time Series of Vertical Distribution of Data 2.2 Comparison between Argo Float and Climatology 2.3 Satellite Altimeter comparison	3 3 4 8
3	Correction of Salinity Data 3.1 Comparison between Argo floats and CTD Climatlogy	8 8 8
	3.1.2 Results 3.2 Comparison between Argo floats and Argo Climatlogy 3.2.1 Configuration 3.2.2 Results 3.3 Summary and Conclusions	$12 \\ 20 \\ 20 \\ 24 \\ 32$
4	Final Checks	32

1 Introduction

Delayed mode analysis was performed for float number 470086i (3901949) where salinity and temperature values were separately compared to nearby historical CTD profiles and nearby Argo profiles as a reference database. The OWC (Cabanes et al., 2016) method was run to estimate a salinity offset and/or a salinity drift. For more information about float 470086i (3901949) click on the following link: http://www.ifremer.fr/argoMonitoring/float/3901949

2 Quality Check of Argo Float Data

2.1 Time Series of Vertical Distribution of Data

Float 3901949 Potential Temperature

Figure 1: Float 3901949. Time series of the vertical distribution of potential temperature (°C).

Figure 2: Float 3901949. Time series of the vertical distribution of practical salinity (PSU).

2.2 Comparison between Argo Float and Climatology

The comparison between float 3901949 and data from WMO boxes $+/-10^{\circ}$ of latitude and longitude shows that the Argo profiles fit within the expected ranges (Figures 3, 4 and 5). This result confirms that float 3901949 represents relatively stable and consistent with the expected physical conditions in this region.

Figure 3: Float 3901949. Float profile of potential temperature (°C) plotted with climatology from the spatial range of 10 °. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles.

Figure 4: Float 3901949. Float profile of salinity (dimensionless) plotted with climatology from the spatial range of 10 °. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles.

Figure 5: Float 3901949. Theta/S plotted with climatology from the spatial range of 10 $^{\circ}$. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles.

2.3 Satellite Altimeter comparison

Figure 6: Float 3901949. The comparison between the Sea Surface Height(SSH) from the satellite altimetry and Dynamic Height Anomaly(DHA) extracted from the Argo float temperature and salinity data

3 Correction of Salinity Data

3.1 Comparison between Argo floats and CTD Climatlogy

3.1.1 Configuration

% ======= %

```
%
    Climatology Data Input Paths
%
HISTORICAL_DIRECTORY=/users/argo/climatology
HISTORICAL_CTD_PREFIX=/historical_ctd/CTD_for_DMQC_2019V01/ctd_
HISTORICAL_BOTTLE_PREFIX=/historical_bot/WOD2001_v2/bot_
HISTORICAL_ARGO_PREFIX=/argo_profiles/ARGO_for_DMQC_2019V03/argo_
%
%
    Float Input Path
%
FLOAT_SOURCE_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_source/
FLOAT_SOURCE_POSTFIX=.mat
%
%
    Mapping Output Path
%
FLOAT_MAPPED_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_mapped/ctd/
FLOAT_MAPPED_PREFIX=map_
FLOAT_MAPPED_POSTFIX=.mat
%
%
    Calibration Output Path
%
FLOAT_CALIB_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_calib/ctd/
FLOAT_CALIB_PREFIX=cal_
FLOAT_CALSERIES_PREFIX=calseries_
FLOAT_CALIB_POSTFIX=.mat
%
%
    Diagnostic Plots Output Path
%
FLOAT_PLOTS_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_plots/ctd/
%
```

```
% Constants File Path
%
```

CONFIG_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/constants/ CONFIG_COASTLINES=coastdat.mat CONFIG_WMO_BOXES=wmo_boxes_ctd.mat CONFIG_SAF=TypicalProfileAroundSAF.mat % % max number of historical casts used in objective mapping CONFIG_MAX_CASTS=310 % 1=use PV constraint, 0=don't use PV constraint, in objective mapping MAP_USE_PV=1 % 1=use SAF separation criteria, 0=don't use SAF separation criteria, in objective mapping MAP_USE_SAF=1 % spatial decorrelation scales, in degrees MAPSCALE_LONGITUDE_LARGE=6 MAPSCALE_LONGITUDE_SMALL=3 MAPSCALE_LATITUDE_LARGE=4 MAPSCALE_LATITUDE_SMALL=2 % cross-isobath scales, dimensionless, see BS(2005) MAPSCALE_PHI_LARGE=0.1 MAPSCALE_PHI_SMALL=0.02 % temporal decorrelation scale, in years MAPSCALE_AGE=5 MAPSCALE_AGE_LARGE=10 % exclude the top xxx dbar of the water column MAP_P_EXCLUDE=100 % only use historical data that are within +/- yyy dbar from float data MAP_P_DELTA=200

Figure 7: Float 3901949. Trajectory of the float with historical CTD data. The black contours indicate the bathymetry at 0, 200, 1000 and 2000 m.

3901949 uncalibrated float data (-) and mapped salinity (o) with objective errors

Figure 8: Float 3901949. Uncalibrated float data and mapped salinity.

3901949 potential conductivity (mmho/cm) multiplicative correction r with errors

Figure 9: Float 3901949. Potential conductivity (top) and vertically averaged salinity (bottom) with errors.

3901949 calibrated float data (-) and mapped salinity (o) with objective errors

Figure 10: Float 3901949. Calibrated float data and mapped salinity.

Figure 11: Float 3901949. Salinity anomaly on θ levels.

Figure 12: Float 3901949. Salinities with errors on θ levels.

Figure 13: Float 3901949. Calibrated salinity anomaly on θ levels.

Figure 14: Float 3901949. Salinity, salinity variance on theta and OW chosen levels.

3.2 Comparison between Argo floats and Argo Climatlogy

3.2.1 Configuration

```
%
%
    Climatology Data Input Paths
%
HISTORICAL_DIRECTORY=/users/argo/climatology
HISTORICAL_CTD_PREFIX=/historical_ctd/CTD_for_DMQC_2019V01/ctd_
HISTORICAL_BOTTLE_PREFIX=/historical_bot/bot_
HISTORICAL_ARGO_PREFIX=/argo_profiles/ARGO_for_DMQC_2019V03/argo_
%
%
    Float Input Path
%
FLOAT_SOURCE_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_source/
FLOAT_SOURCE_POSTFIX=.mat
%
    Mapping Output Path
%
%
FLOAT_MAPPED_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_mapped/argo/
FLOAT_MAPPED_PREFIX=map_
FLOAT_MAPPED_POSTFIX=.mat
%
%
    Calibration Output Path
%
FLOAT_CALIB_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_calib/argo/
FLOAT_CALIB_PREFIX=cal_
FLOAT_CALSERIES_PREFIX=calseries_
FLOAT_CALIB_POSTFIX=.mat
%
%
    Diagnostic Plots Output Path
%
```

FLOAT_PLOTS_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_plots/argo/ % % Constants File Path % CONFIG_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/constants/ CONFIG_COASTLINES=coastdat.mat CONFIG_WMO_BOXES=wmo_boxes_argo.mat CONFIG_SAF=TypicalProfileAroundSAF.mat % % Objective Mapping Parameters % % max number of historical casts used in objective mapping CONFIG_MAX_CASTS=310 % 1=use PV constraint, 0=don't use PV constraint, in objective mapping MAP_USE_PV=1 % 1=use SAF separation criteria, 0=don't use SAF separation criteria, in objective mapping MAP_USE_SAF=1 % spatial decorrelation scales, in degrees MAPSCALE_LONGITUDE_LARGE=6 MAPSCALE_LONGITUDE_SMALL=3 MAPSCALE_LATITUDE_LARGE=4 MAPSCALE_LATITUDE_SMALL=2 % cross-isobath scales, dimensionless, see BS(2005) MAPSCALE_PHI_LARGE=0.1 MAPSCALE_PHI_SMALL=0.02 % temporal decorrelation scale, in years MAPSCALE_AGE=5 MAPSCALE_AGE_LARGE=10 % exclude the top xxx dbar of the water column MAP_P_EXCLUDE=100 % only use historical data that are within +/- yyy dbar from float data MAP_P_DELTA=200

Figure 15: Float 3901949. Trajectory of the float with historical CTD data. The black contours indicate the bathymetry at 0, 200, 1000 and 2000 m.

3901949 uncalibrated float data (-) and mapped salinity (o) with objective errors

Figure 16: Float 3901949. Uncalibrated float data and mapped salinity.

3901949 potential conductivity (mmho/cm) multiplicative correction r with errors

Figure 17: Float 3901949. Potential conductivity (top) and vertically averaged salinity (bottom) with errors.

3901949 calibrated float data (-) and mapped salinity (o) with objective errors

Figure 18: Float 3901949. Calibrated float data and mapped salinity.

Figure 19: Float 3901949. Salinity anomaly on Theta

Figure 20: Float 3901949. Salinities with errors on θ .

Figure 21: Float 3901949. Calibrated salinity anomaly on $\theta.$

Figure 22: Float 3901949. Salinity, salinity variance on theta and OW chosen levels.

3.3 Summary and Conclusions

The Apex float was adjusted using the sea surface pressure data. The pressure sensor is not truncated, QC=1, error=2.4 dbar. The theta levels were set below 1000 m.The time series separated onto three time steps due to very long time series (almost 8 years) and different water masses. The assessed error of salinity for cycles 1-120 is 0.005; 121-199 is 0.015 and 200-286 is 0.01. No further corrections is required.

Final Checks $\mathbf{4}$

^{3901949:} correction for PRES(pres_adjusted - pres) in the netcdf file

34 Figure 23: Float 3901949. Time series of applied pressure corrections.

Figure 25: Float 3901949. Time series of applied salinity corrections.