Delayed mode quality control of Argo float 6901121

Kamila Walicka

British National Data Centre (BODC), National Oceanography Centre Joseph Proudman Building, 6, Brownlow St, Liverpool L3 5DA

September 19, 2019

Summary

The comparison between Argo float 6901121 and reference data (Argo and CTD, respectively)showed a salinity drift after cycle 200. The assessed salinity error from 1 to 199 is < 0.01 and qc=1. Cycle from 200 to 285, salinity correction applies with qc 2and error 0.02 The pressure sensor in Apex float is not truncated with a negative pressure drift, QC=1, error = 2.4 dbar.

WMO number	DM correction
6901121	No correction

Table 1: Correction applied in delayed mode.

Contents

1	Introduction	3
2	Quality Check of Argo Float Data 2.1 Time Series of Vertical Distribution of Data 2.2 Comparison between Argo Float and Climatology 2.3 Satellite Altimeter comparison	3 3 4 8
3	Pressure Adjustment for APEX Floats	8
4	Correction of Salinity Data 4.1 Comparison between Argo floats and CTD Climatlogy	10 10 14 22 22 26 34
5	Final Checks	34

1 Introduction

Delayed mode analysis was performed for float number 55669 (6901121) where salinity and temperature values were separately compared to nearby historical CTD profiles and nearby Argo profiles as a reference database. The OWC (Cabanes et al., 2016) method was run to estimate a salinity offset and/or a salinity drift.

For more information about float 55669 (6901121) click on the following link: http://www.ifremer.fr/argoMonitoring/float/

2 Quality Check of Argo Float Data

2.1 Time Series of Vertical Distribution of Data

Float 6901121 Potential Temperature

Figure 1: Float 6901121. Time series of the vertical distribution of potential temperature (°C).

Figure 2: Float 6901121. Time series of the vertical distribution of practical salinity (PSU).

2.2 Comparison between Argo Float and Climatology

The comparison between float 6901121 and data from WMO boxes $+/-10^{\circ}$ of latitude and longitude shows that the Argo profiles fit within the expected ranges (Figures 3, 4 and 5). This result confirms that float 6901121 represents relatively stable and consistent with the expected physical conditions in this region.

Figure 3: Float 6901121. Float profile of potential temperature (°C) plotted with climatology from the spatial range of 10 °. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles.

Figure 4: Float 6901121. Float profile of salinity (dimensionless) plotted with climatology from the spatial range of 10 °. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles.

Figure 5: Float 6901121. Theta/S plotted with climatology from the spatial range of 10 $^{\circ}$. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles.

2.3 Satellite Altimeter comparison

6901121 - 1900 db

Figure 6: Float 6901121. The comparison betweeen the Sea Surface Height(SSH) from the satellite altimetry and Dynamic Height Anomaly(DHA)extracted from the Argo float temperature and salinity data

3 Pressure Adjustment for APEX Floats

Float 6901121 is the Apex float, where the pressure sensor is not auto-corrected to zero while at the sea surface, hence the pressure data in Apex float have to be corrected during processing in delayed-mode. The procedures of adjusting sea surface pressure are described in Argo User's Manual, 2017 (https://archimer.ifremer.fr/doc/00228/33951/32470.pdf). The pressure sensor in Apex float 6901121 is not truncated, QC=1, error = 2.4 dbar (Figure 7).

Figure 7: Float 6901121. Sea surface pressure data. The red cross indicate the raw pressure before float descent, recorded after sending data to GDAC. Blue circle indicate pressure value in the real-time. Green rotated cross shows the pressure correction applied from the previous float cycle.

4 Correction of Salinity Data

4.1 Comparison between Argo floats and CTD Climatlogy

```
4.1.1 Configuration
```

```
%
%
    Climatology Data Input Paths
%
HISTORICAL_DIRECTORY=/users/argo/climatology
HISTORICAL_CTD_PREFIX=/historical_ctd/CTD_for_DMQC_2018V01/ctd_
HISTORICAL_BOTTLE_PREFIX=/historical_bot/bot_
HISTORICAL_ARGO_PREFIX=/argo_profiles/ARGO_for_DMQC_2018V01/argo_
%
%
    Float Input Path
%
FLOAT_SOURCE_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_source/
FLOAT_SOURCE_POSTFIX=.mat
%
%
    Mapping Output Path
%
FLOAT_MAPPED_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_mapped/ctd/
FLOAT_MAPPED_PREFIX=map_
FLOAT_MAPPED_POSTFIX=.mat
%
%
    Calibration Output Path
%
FLOAT_CALIB_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_calib/ctd/
FLOAT_CALIB_PREFIX=cal_
FLOAT_CALSERIES_PREFIX=calseries_
FLOAT_CALIB_POSTFIX=.mat
%
```

% Diagnostic Plots Output Path
%

FLOAT_PLOTS_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_plots/ctd/

```
%
%
    Constants File Path
%
CONFIG_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/constants/
CONFIG_COASTLINES=coastdat.mat
CONFIG_WMO_BOXES=wmo_boxes_ctd.mat
CONFIG_SAF=TypicalProfileAroundSAF.mat
%
%
    Objective Mapping Parameters
%
% max number of historical casts used in objective mapping
CONFIG_MAX_CASTS=300
% 1=use PV constraint, 0=don't use PV constraint, in objective mapping
MAP_USE_PV=1
% 1=use SAF separation criteria, 0=don't use SAF separation criteria, in objective mapping
MAP_USE_SAF=0
% spatial decorrelation scales, in degrees
MAPSCALE_LONGITUDE_LARGE=3.2
MAPSCALE_LONGITUDE_SMALL=0.8
MAPSCALE_LATITUDE_LARGE=2
MAPSCALE_LATITUDE_SMALL=0.5
% cross-isobath scales, dimensionless, see BS(2005)
MAPSCALE_PHI_LARGE=0.1
MAPSCALE_PHI_SMALL=0.02
\% temporal decorrelation scale, in years
MAPSCALE_AGE=0.69
MAPSCALE_AGE_LARGE=2
\% exclude the top xxx dbar of the water column
MAP_P_EXCLUDE=100
```

% only use historical data that are within +/- yyy dbar from float data MAP_P_DELTA=150

Figure 8: Float 6901121. Trajectory of the float with historical CTD data. The black contours indicate the bathymetry at 0, 200, 1000 and 2000 m.

1 uncalibrated float data (-) and mapped salinity (o) with objective errors

Figure 9: Float 6901121. Uncalibrated float data and mapped salinity.

15

6901121 potential conductivity (mmho/cm) multiplicative correction r with errors

Figure 10: Float 6901121. Potential conductivity (top) and vertically averaged salinity (bottom) with errors.

.21 calibrated float data (-) and mapped salinity (o) with objective errors

Figure 11: Float 6901121. Calibrated float data and mapped salinity.

18

Figure 12: Float 6901121. Salinity anomaly on θ levels.

Figure 13: Float 6901121. Salinities with errors on θ levels.

Figure 14: Float 6901121. Calibrated salinity anomaly on θ levels.

Figure 15: Float 6901121. Salinity, salinity variance on theta and OW chosen levels.

4.2 Comparison between Argo floats and Argo Climatlogy

4.2.1 Configuration

```
%
%
    Climatology Data Input Paths
%
HISTORICAL_DIRECTORY=/users/argo/climatology
HISTORICAL_CTD_PREFIX=/historical_ctd/CTD_for_DMQC_2018V01/ctd_
HISTORICAL_BOTTLE_PREFIX=/historical_bot/bot_
HISTORICAL_ARGO_PREFIX=/argo_profiles/ARGO_for_DMQC_2018V01/argo_
%
%
    Float Input Path
%
FLOAT_SOURCE_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_source/
FLOAT_SOURCE_POSTFIX=.mat
%
    Mapping Output Path
%
%
FLOAT_MAPPED_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_mapped/argo/
FLOAT_MAPPED_PREFIX=map_
FLOAT_MAPPED_POSTFIX=.mat
%
%
    Calibration Output Path
%
FLOAT_CALIB_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_calib/argo/
FLOAT_CALIB_PREFIX=cal_
FLOAT_CALSERIES_PREFIX=calseries_
FLOAT_CALIB_POSTFIX=.mat
%
%
    Diagnostic Plots Output Path
%
```

FLOAT_PLOTS_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_plots/argo/ % % Constants File Path % CONFIG_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/constants/ CONFIG_COASTLINES=coastdat.mat CONFIG_WMO_BOXES=wmo_boxes_argo.mat CONFIG_SAF=TypicalProfileAroundSAF.mat % % Objective Mapping Parameters % % max number of historical casts used in objective mapping CONFIG_MAX_CASTS=300 % 1=use PV constraint, 0=don't use PV constraint, in objective mapping MAP_USE_PV=1 % 1=use SAF separation criteria, 0=don't use SAF separation criteria, in objective mapping MAP_USE_SAF=0 % spatial decorrelation scales, in degrees MAPSCALE_LONGITUDE_LARGE=3.2 MAPSCALE_LONGITUDE_SMALL=0.8 MAPSCALE_LATITUDE_LARGE=2 MAPSCALE_LATITUDE_SMALL=0.5 % cross-isobath scales, dimensionless, see BS(2005) MAPSCALE_PHI_LARGE=0.1 MAPSCALE_PHI_SMALL=0.02 % temporal decorrelation scale, in years MAPSCALE_AGE=0.69 MAPSCALE_AGE_LARGE=2 % exclude the top xxx dbar of the water column MAP_P_EXCLUDE=100 % only use historical data that are within +/- yyy dbar from float data MAP_P_DELTA=150

Figure 16: Float 6901121. Trajectory of the float with historical CTD data. The black contours indicate the bathymetry at 0, 200, 1000 and 2000 m.

1 uncalibrated float data (-) and mapped salinity (o) with objective errors

Figure 17: Float 6901121. Uncalibrated float data and mapped salinity.

6901121 potential conductivity (mmho/cm) multiplicative correction r with errors

Figure 18: Float 6901121. Potential conductivity (top) and vertically averaged salinity (bottom) with errors.

.21 calibrated float data (-) and mapped salinity (o) with objective errors

Figure 19: Float 6901121. Calibrated float data and mapped salinity.

30

Figure 20: Float 6901121. Salinity anomaly on Theta

Figure 21: Float 6901121. Salinities with errors on $\theta.$

Figure 22: Float 6901121. Calibrated salinity anomaly on θ .

Figure 23: Float 6901121. Salinity, salinity variance on theta and OW chosen levels.

4.3 Summary and Conclusions

The Apex float was adjusted using the sea surface pressure data. The pressure sensor is not truncated, QC=1, error=2.4 dbar. The configurations of the objective mapping parameters, set for float 6901121, were applied separately for CTD and Argo reference data. In the setcalseries we set the theta levels between 12 and 15 degrees. Data showed a salinity drift after cycle 200. The assessed salinity error from 1 to 199 is < 0.01 and qc=1. Cycle from 200 to 285, salinity correction applies with QC 2 and salinity error 0.02

5 Final Checks

Figure 24: Float 6901121. Time series of applied pressure corrections.

Figure 25: Float 6901121. Time series of applied temperature corrections.

Figure 26: Float 6901121. Time series of applied salinity corrections.