Delayed Mode Quality Control of Argo float 1901305

Kamila Walicka

British Oceanographic Data Centre (BODC), National Oceanography Centre Joseph Proudman Building, 6, Brownlow St, Liverpool L3 5DA

April 8, 2020

Short Summary

The pressure sensor propagate well with QC=1, err 2.4dbar.From profile1 to 57 float does not require corrections, QC=1 error 0.01. From profiles 58 to 255 float showed positive salinity drift non adjustable QC=4.

WMO number	DM correction
1901305	No corrections

Table 1: Correction applied in delayed mode.

Contents

1	Introduction	3
2	Quality Check of Argo Float Data 2.1 Satellite Altimeter comparison 2.2 Time Series of Vertical Distribution of Data 2.3 Comparison between Argo Float and Climatology	4 4 5 8
3	Pressure Adjustment for APEX Floats	11
4	Correction of Salinity Data 4.1 Comparison between Argo floats and CTD Climatlogy	 13 13 16 24 24 28 36
5	References	36

1 Introduction

Delayed mode analysis was performed for float number 58949 (WMO: 1901305) where salinity and temperature values were separately compared to nearby historical CTD profiles and nearby Argo profiles as a reference database. The OWC (Cabanes et al., 2016) method was run to estimate a salinity offset and a salinity drift. For more information about float 1901305click on the following link:

http://www.ifremer.fr/argoMonitoring/float/1901305

2 Quality Check of Argo Float Data

2.1 Satellite Altimeter comparison

1901305 - 1200 db

Figure 1: Float 1901305. The comparison betweeen the Sea Surface Height (SSH) from the satellite altimetry and Dynamic Height Anomaly (DHA) extracted from the Argo float temperature and salinity data (ftp://ftp.ifremer.fr/ifremer/argo/etc/argo-ast9-item13-AltimeterComparison/figures/).

2.2 Time Series of Vertical Distribution of Data

Float 1901305 Potential Temperature

Figure 2: Float 1901305. Time series of the vertical distribution of potential temperature (°C).

Figure 3: Float 1901305. Time series of the vertical distribution of salinity (PSS-78).

8

Figure 4: Float 1901305. Potential temperature (°C) plotted with pressure (dBar) and data from WMO boxes of CTD reference data (CTD for DMQC 2019V01) +/- 10 °of latitude and longitude. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles from this float. The thin colors lines indicate the reference data

Figure 5: Float 1901305. Salinity (PSS-78) plotted with pressure (dBar) and data from WMO boxes of CTD reference data (CTD for DMQC 2019V01) +/- 10° of latitude and longitude. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles from this float. The thin colors lines indicate the reference data.

Figure 6: Float 1901305. T/S diagram plotted with and data from WMO boxes of CTD reference data (CTD for DMQC 2019V01) +/- 10° of latitude and longitude. The black and blue cycles indicates the first and the last Argo profile, respectively. Green symbols represent other Argo profiles from this float.

3 Pressure Adjustment for APEX Floats

Float 1901305 is the Apex float, where the pressure sensor is not auto-corrected to zero while at the sea surface, hence the pressure data in Apex float have to be corrected during processing in delayed-mode. The procedures of adjusting sea surface pressure are described in Argo User's Manual, 2017

(https://archimer.ifremer.fr/doc/00228/33951/32470.pdf). The pressure sensor in Apex float 1901305 is not truncated, QC=1, error = 2.4 dbar (Figure 7).

Raw surface pressure measured before descent (+0 dbar offset) for float 58949

Figure 7: Float 1901305. Sea surface pressure data. The red cross indicate the raw pressure before float descent, recorded after sending data to GDAC. Blue circle indicate pressure value in the real-time. Green rotated cross shows the pressure correction applied from the previous float cycle.

4 Correction of Salinity Data

4.1 Comparison between Argo floats and CTD Climatlogy

```
4.1.1 Configuration
```

```
%
%
    Climatology Data Input Paths
%
HISTORICAL_DIRECTORY=/users/argo/climatology
HISTORICAL_CTD_PREFIX=/historical_ctd/CTD_for_DMQC_2019V01/ctd_
HISTORICAL_BOTTLE_PREFIX=/historical_bot/WOD2001_v2/bot_
HISTORICAL_ARGO_PREFIX=/argo_profiles/ARGO_for_DMQC_2019V03/argo_
%
%
    Float Input Path
%
FLOAT_SOURCE_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_source/
FLOAT_SOURCE_POSTFIX=.mat
%
%
    Mapping Output Path
%
FLOAT_MAPPED_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_mapped/ctd/
FLOAT_MAPPED_PREFIX=map_
FLOAT_MAPPED_POSTFIX=.mat
%
%
    Calibration Output Path
%
FLOAT_CALIB_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_calib/ctd/
FLOAT_CALIB_PREFIX=cal_
FLOAT_CALSERIES_PREFIX=calseries_
FLOAT_CALIB_POSTFIX=.mat
%
```

% Diagnostic Plots Output Path
%

FLOAT_PLOTS_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_plots/ctd/

```
%
%
    Constants File Path
%
CONFIG_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/constants/
CONFIG_COASTLINES=coastdat.mat
CONFIG_WMO_BOXES=wmo_boxes_ctd.mat
CONFIG_SAF=TypicalProfileAroundSAF.mat
%
% max number of historical casts used in objective mapping
CONFIG_MAX_CASTS=310
% 1=use PV constraint, 0=don't use PV constraint, in objective mapping
MAP_USE_PV=1
% 1=use SAF separation criteria, 0=don't use SAF separation criteria, in objective mapping
MAP_USE_SAF=1
% spatial decorrelation scales, in degrees
MAPSCALE_LONGITUDE_LARGE=6
MAPSCALE_LONGITUDE_SMALL=3
MAPSCALE_LATITUDE_LARGE=4
MAPSCALE_LATITUDE_SMALL=2
% cross-isobath scales, dimensionless, see BS(2005)
MAPSCALE_PHI_LARGE=0.1
MAPSCALE_PHI_SMALL=0.02
% temporal decorrelation scale, in years
MAPSCALE_AGE=10
MAPSCALE_AGE_LARGE=20
\% exclude the top xxx dbar of the water column
MAP_P_EXCLUDE=100
% only use historical data that are within +/- yyy dbar from float data
MAP_P_DELTA=200
```


Figure 8: Float 1901305. Location of the float profiles (red line with coloured numbers) and the CTD reference data selected for mapping (blue dots). The black contours indicate the bathymetry at 0, 200, 1000 and 2000 m.

)5 uncalibrated float data (-) and mapped salinity (o) with objective errors

Figure 9: Float 1901305. Plots the original float salinity and the objectively estimated reference salinity at the 10 float theta levels that are used in calibration.

1901305 potential conductivity (mmho/cm) multiplicative correction r with errors

Figure 10: Float 1901305. Evolution of the suggested adjustment with time. The top panel plots the potential conductivity multiplicative adjustment. The bottom panel plots the equivalent salinity additive adjustment. The red line denotes one-to-one profile fit that uses the vertically weighted mean of each profile. The red line can be used to check for anomalous profiles relative to the optimal fit.

305 calibrated float data (-) and mapped salinity (o) with objective errors

Figure 11: Float 1901305. Plots of calibrated float salinity and the objectively estimated reference salinity at the 10 float theta levels that are used in calibration.

Figure 12: Float 1901305. Salinity anomaly on theta levels.

Figure 13: Float 1901305. Plots of the evolution of salinity with time along with selected theta levels with minimum salinity variance.

Figure 14: Float 1901305. Calibrated salinity anomaly on theta levels.

Figure 15: Float 1901305. Plots including the theta levels chosen for calibration: Top left: Salinity variance at theta levels. Top right: T/S diagram of all profiles of Argo float. Bottom left: potential temperature plotted against pressure. Bottom right: salinity plotted against pressure.

4.2 Comparison between Argo floats and Argo Climatlogy

4.2.1 Configuration

```
%
%
    Climatology Data Input Paths
%
HISTORICAL_DIRECTORY=/users/argo/climatology
HISTORICAL_CTD_PREFIX=/historical_ctd/CTD_for_DMQC_2019V01/ctd_
HISTORICAL_BOTTLE_PREFIX=/historical_bot/bot_
HISTORICAL_ARGO_PREFIX=/argo_profiles/ARGO_for_DMQC_2019V03/argo_
%
%
    Float Input Path
%
FLOAT_SOURCE_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_source/
FLOAT_SOURCE_POSTFIX=.mat
%
    Mapping Output Path
%
%
FLOAT_MAPPED_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_mapped/argo/
FLOAT_MAPPED_PREFIX=map_
FLOAT_MAPPED_POSTFIX=.mat
%
%
    Calibration Output Path
%
FLOAT_CALIB_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_calib/argo/
FLOAT_CALIB_PREFIX=cal_
FLOAT_CALSERIES_PREFIX=calseries_
FLOAT_CALIB_POSTFIX=.mat
%
%
    Diagnostic Plots Output Path
%
```

FLOAT_PLOTS_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/float_plots/argo/ % % Constants File Path % CONFIG_DIRECTORY=/users/argo/ow/matlabow-2.0.1/data/constants/ CONFIG_COASTLINES=coastdat.mat CONFIG_WMO_BOXES=wmo_boxes_argo.mat CONFIG_SAF=TypicalProfileAroundSAF.mat % % **Objective Mapping Parameters** % % max number of historical casts used in objective mapping CONFIG_MAX_CASTS=310 % 1=use PV constraint, 0=don't use PV constraint, in objective mapping MAP_USE_PV=1 % 1=use SAF separation criteria, 0=don't use SAF separation criteria, in objective mapping MAP_USE_SAF=1 % spatial decorrelation scales, in degrees MAPSCALE_LONGITUDE_LARGE=6 MAPSCALE_LONGITUDE_SMALL=3 MAPSCALE_LATITUDE_LARGE=4 MAPSCALE_LATITUDE_SMALL=2 % cross-isobath scales, dimensionless, see BS(2005) MAPSCALE_PHI_LARGE=0.1 MAPSCALE_PHI_SMALL=0.02 % temporal decorrelation scale, in years MAPSCALE_AGE=10 MAPSCALE_AGE_LARGE=20 % exclude the top xxx dbar of the water column MAP_P_EXCLUDE=100 % only use historical data that are within +/- yyy dbar from float data MAP_P_DELTA=200

Figure 16: Float 1901305. Location of the float profiles (red line with coloured numbers) and the CTD reference data selected for mapping (blue dots). The black contours indicate the bathymetry at 0, 200, 1000 and 2000 m.

)5 uncalibrated float data (-) and mapped salinity (o) with objective errors

Figure 17: Float 1901305. Plots the original float salinity and the objectively estimated reference salinity at the 10 float theta levels that are used in calibration.

1901305 potential conductivity (mmho/cm) multiplicative correction r with errors

Figure 18: Float 1901305. Evolution of the suggested adjustment with time. The top panel plots the potential conductivity multiplicative adjustment. The bottom panel plots the equivalent salinity additive adjustment. The red line denotes one-to-one profile fit that uses the vertically weighted mean of each profile. The red line can be used to check for anomalous profiles relative to the optimal fit.

305 calibrated float data (-) and mapped salinity (o) with objective errors

Figure 19: Float 1901305. Plots of calibrated float salinity and the objectively estimated reference salinity at the 10 float theta levels that are used in calibration.

Figure 20: Float 1901305. Salinity anomaly on theta levels.

Figure 21: Float 1901305. Plots of the evolution of salinity with time along with selected theta levels with minimum salinity variance.

Figure 22: Float 1901305. Calibrated salinity anomaly on theta levels.

Figure 23: Float 1901305. SPlots including the theta levels chosen for calibration: Top left: Salinity variance at theta levels. Top right: T/S diagram of all profiles of Argo float. Bottom left: potential temperature plotted against pressure. Bottom right: salinity plotted against pressure.

4.3 Summary and Conclusions

Float was deployed in the Drake Passage region and flowed eastward, driven by the ACC. In the set cal series the theta levels has been constrained to below 1200 m. From profile 1 to 57 float is behaving well and no correlations are required (salinity error 0.01 and QC=1. From profile 58 strong salty drift was detected. this drift is not correctable and QC was set to 4.

5 References