
Monitoring of Agents for Dynamic
Pricing in different Recommerce Markets

Nikkel Mollenhauer

Bachelor thesis
submitted for the degree of

Bachelor of Science
(B. Sc.)

in IT-Systems Engineering

on June 30, 2022 to the
Enterprise Platform and Integration Concepts

research group of the Digital-Engineering faculty
of the University of Potsdam

Supervisors Dr. Michael Perscheid
Dr. Rainer Schlosser
Johannes Huegle
Alexander Kastius

0Abstract
Sustainable recommerce markets are growing faster than ever. In such markets,

customers are incentivised to resell their used products to businesses, which then

refurbish and sell them again on the secondary market. However, businesses now

face the challenge of having to set three different prices for the same item: One

price for the new item, one for its refurbished version and the price at which

items are bought back from customers. Since these prices are heavily influenced

by each other, traditional pricing methods become less effective. To solve this

dynamic pricing problem, a simulation framework was built which can be used

to train artificial vendors to set optimised prices using Reinforcement learning

algorithms. Before employing these trained agents on real markets, their fitness

must be monitored and evaluated, as prices that are too high or too low can lead

to high costs for the business. This thesis introduces a number of ways that such

dynamic pricing agents can be monitored. We come to the conclusion that it is

best to use a wide range of tools when evaluating different aspects of an agent’s

performance, from running large-scale simulations to monitoring small policy

changes following shifting market states.

iii

0Zusammenfassung

Nachhaltige Recommerce-Märkte befinden sich in stetigemWachstum. Diese Märk-

te bieten Kunden Anreize, ihre gebrauchten Produkte an Unternehmen zurückzuver-

kaufen. Diese generalüberholen das angekaufte Produkt und stellen es anschließend

auf dem Sekundärmarkt erneut zum Verkauf. Dies stellt Unternehmen jedoch vor

die neuartige Herausforderung, dasselbe Produkt mehrfach bepreisen zu müssen:

Preise sowohl für die neue und generalüberholte Version sowie ein Ankaufpreis

für gebrauchte Ware müssen gesetzt werden. Da diese Preise einander beeinflus-

sen, greifen traditionelle Methoden der Preissetzung schlechter. Zur Lösung dieses

dynamischen Bepreisungsproblems wurde eine Simulationsplattform gebaut, auf

der mithilfe von Reinforcement-Learning-Algorithmen maschinelle Verkäufer für

den Einsatz in realen Märkten trainiert werden können. Bevor dies jedoch gesche-

hen kann, müssen die trainierten Modelle bezüglich ihrer Eignung überprüft und

bewertet werden, da zu hoch oder niedrig angesetzte Preise zu hohen Verlusten

aufseiten des Unternehmens führen können. Diese Arbeit führt Tools ein, die für ein

Monitoring solcher Modelle verwendet werden können. Wir stellen fest, dass die

Nutzung möglichst diversifizierter Methoden, von der Simulation großangelegter

Märkte bis zum Monitoring kleinster Verhaltensänderungen aufgrund geänderter

Marktzustände, die besten Ergebnisse bei der Bewertung einer Bepreisungsmethode

liefert.

v

0Contents
Abstract iii

Contents vii

1 Introduction 1
1.1 Motivation . 1

1.2 The Circular Economy model . 2

1.3 Reinforcement learning . 3

2 Related Work 5
2.1 Dynamic Pricing . 5

2.2 Visualisation - State-of-the-art . 5

2.3 Visualisation - Novel approaches 6

3 Simulating the Marketplace 7
3.1 Market scenarios . 7

3.2 Customers . 8

3.3 Vendors . 11

4 Approaches to Monitoring Agents 15
4.1 Monitoring use cases . 15

4.2 Monitoring during training . 16

4.3 Monitoring complete agents . 17

5 The recommerceWorkflow 21
5.1 Configuring the run . 21

5.2 The monitoring workflow . 22

6 Monitoring an Experiment 23
6.1 Setting up the experiment . 23

6.2 Experiment results . 23

7 Outlook & Summary 33
7.1 Modelling a realistic recommerce marketplace 33

7.2 Improving our monitoring tools 33

7.3 Summary . 35

Bibliography 37

List of Figures 42

A Appendix 43

Declaration of Authorship 53

vii

1 Introduction

This thesis is based on the bachelor’s project ‘Online Marketplace Simulation: A Testbed
for Self-Learning Agents’ of the Enterprise Platform and Integration Concepts research
group at the Hasso-Plattner-Institute. Therefore, the project will be referenced and all
examples and experiments will be conducted using its framework.

1.1 Motivation
Nowadays, shoppers and retailers alike are getting more environmentally conscious.

A study conducted in 2020 found that over two-thirds of shoppers planned on buying

sustainable clothing in the future, and over half already did buy sustainable clothing

regularly [KPM20]. At the same time another study reveals that retailers favour

online channels over offline channels when selling used goods, with 78% preferring

the former and only 6% the latter [Ins20]. This demand is leading more and more

businesses, especially those selling their products through e-commerce channels, to

adopt more sustainable strategies and enter the Circular Economy, a concept we will
explain in Section 1.2. In the context of e-commerce, Circular Economy markets

are also referred to as recommerce markets, a phrase coined in 2005 [Arc05].

The goal of the bachelor’s project this thesis is based on was to simulate such

recommerce markets, to allow for risk-free and efficient learning of market char-

acteristics for different pricing agents. Aside from classically rule-based pricing

methods, the project also focussed on training machine learning models using

Reinforcement learning (RL) algorithms on the simulated marketplace, see Section

1.3. The focus of this thesis lies on ways that such dynamic pricing agents can

be monitored and evaluated. In Chapter 2 we will first explore the difficulties

faced in dynamic pricing, as well as current and novel approaches to monitoring

and evaluating Reinforcement learning agents in different scenarios. This will be

followed by an overview of the specific features of recommerce marketplaces that

we implemented in Chapter 3. Chapter 4 contains detailed explanations of the

different tools we built and use to monitor and evaluate our different agents. These

tools will be put into context in Chapter 5, where the simulation workflow of the

framework will be presented. Finally, in Chapter 6, we will train an RL agent using

our simulation framework and take a look at how the different monitoring tools

can help in evaluating its performance.

1

Chapter 1 Introduction

Figure 1.1: The product lifecycle in a Circular Economy with rebuy prices. In a Linear

Economy the product lifecycle ends with step 2. Step 6 may also reconnect with Step 3 to

start a new cycle.

1.2 The Circular Economy model
The main goal of the aforementioned bachelor’s project was to simulate an online

marketplace that reconstructs a realistic Circular Economy market environment. A

market is most commonly referred to as being a Circular Economy if it includes the

three activities of reduce, reuse and recycle [KRH17]. This means that while in a

classical Linear Economymarket each product is being sold once at its new price and
after use being thrown away, in a Circular Economy a focus is put on recycling and

thereby waste reduction. In our project, we first started by modelling the simpler

Linear Economy, upon which we then built the more complex Circular Economy

markets. This was done by adding two additional price channels, refurbished price
and rebuy price, to the pre-existing new price of a product. Please also refer to

Figure 1.1 for an overview of the product lifecycle in a Circular Economy with

rebuy prices.

The rebuy price is defined as the price a vendor is willing to pay a customer to buy

back a used product, while the refurbished price is defined as the price the vendor

sets for products they previously bought back and now want to sell alongside

new products (whose price is defined by the new price). In Section 3.1 we will

explain the different market scenarios we modelled in more detail, together with

how we transferred different aspects of these scenarios from the real market to our

simulation framework. Please refer to Figure 3.1 for an overview of the different

market components and how they interact with each other in our framework.

From now on, when referring to a recommerce market, we are referencing a

Circular Economy marketplace with rebuy prices.

2

Reinforcement learning Section 1.3

Figure 1.2: The standard Reinforcement learning model in the context of our market

simulation.

1.3 Reinforcement learning
After the initial market was modelled, the goal was to train agents using different

Reinforcement learning algorithms to dynamically set prices on this marketplace,

both in monopolistic scenarios and in competition with rule-based vendors which

set prices following a strict set of pre-defined rules. These rules can range from

simply undercutting the lowest competitor’s price to more advanced techniques

such as smart inventory management and reliance on previous sales data. An

overview of the different types of vendors, both rule-based and using RL, can be

found in Section 3.3. Furthermore, functionality was added that allows for different

RL algorithms to be trained against each other on the same marketplace, as well as

functionality for so-called self-play, where an agent plays against itself, or more

precisely, against its own policy, see [Gro22] for more information.

Reinforcement learning agents are trained through a process of trial-and-error.

They interact with the market through an observable state and an action which

influences the following state. Figure 1.2 illustrates the RL model in the context of

our market. The goal of the agent is to maximise its reinforcement signal, which in

the case of our simulation framework is the profit the agent made during the last

training episode, since we want to train agents to maximise profits on real markets.

An episode consists of a fixed, but pre-configurable number of time steps, where

in each step each vendor (agent) sets their prices and customers make purchasing

decisions. In this sense, a simulated episode could be imagined to be a day in the

real world, with vendors updating their prices multiple times per day, whenever

a new time step begins. By observing which prices lead to which profits (= the

reinforcement signal), the Reinforcement learning agents get more effective in their

pricing decisions over the course of training, which in most cases spans thousands

of episodes.

3

2 Related Work

This chapter introduces the history and importance of dynamic pricing methods and
their connection to the demand for simulated marketplaces. Additionally, traditional
and novel approaches to monitoring and evaluating Reinforcement learning agents
will be presented.

2.1 Dynamic Pricing
The topic of dynamic pricing techniques is well explored, with the earliest math-

ematical models having been developed over a century ago [den15]. With the

emergence of e-commerce and the ability to cheaply and quickly change prices, as

well as increased freedom of information, including being able to know competitors’

prices in real time, the topic has gained importance even further. However, research

concerning dynamic pricing in e-commerce, especially in highly competitive mar-

kets, has not grown at the same pace as the markets themselves [GB22]. On the

other hand, the role that autonomous agents will play in this new market environ-

ment, in the form of vendors and customers alike, has for a long time been a topic

of discussion and speculation [KHG00]. Dynamic pricing methods come in many

different shapes and forms, from simple greedy algorithms over customer-choice

methodology to machine learning models [Gee+19]. Due to this high number of

options to choose from, and to enable researchers to evaluate their algorithms’

performance, a unified platform for comparison is needed. The real market is not

really an option for this, as it is nearly impossible to create equal opportunities

for each pricing agent to be able to reliably compare them to each other. This is

one of the major reasons for simulating the real market - development, testing and

comparison of new pricing methods.

2.2 Visualisation - State-of-the-art
When training RL agents, it is almost a requirement to be able to visualise data

collected during training, to allow for an analysis of the algorithm’s performance.

For the past years, going back as far as 2018, one of the most used program-

ming frameworks overall and the most used for machine learning was Tensor-

Flow [Ove22]. Aside from its API for model building, TensorFlow also provides a

front-end visualisation toolkit called TensorBoard, which can be used independent

of other TensorFlow tools. TensorBoard provides an API for tracking and visual-

ising important metrics such as loss and accuracy of a trained model, and allows

developers to easily integrate their own metrics as well. During an experiment, data

can be visualised live during the training process, allowing developers to quickly

gain insights into the performance of the algorithms. In our market simulation

framework, we use the TensorBoard in conjunction with our own tools for data

visualisation, see Chapter 4.

5

Chapter 2 Related Work

2.3 Visualisation - Novel approaches

2.3.1 Model visualisation
Aside from visualising results of a training run, developers may also want to

visualise the model itself. Tools such as the Graph Visualizer [Won+18] are a step

in the right direction, but the authors found that while developers are satisfied with

the visualisation tool itself, they would prefer to be able to edit and influence the

graph model directly. The SimTF tool developed by Leung et al. [CLH18] attempts

to solve this problem. The same as the Graph Visualizer, the SimTF tool is based on

TensorFlow. The authors describe it as a library for neural network model building.
SimTF acts as a middleman between the visually constructed neural network graph

model and the TensorFlow API, allowing developers to modify the visualised model

to influence the training network.

In our simulation framework, the used neural network model itself is quite static,

as users can only choose from a pre-set selection of network sizes, and all changes

to hyperparameters must be done through configuration files ahead of a training

run.

2.3.2 Evaluation
On the other side of the visualisation tools we have those which provide insights

into currently running or completed training runs, such as the previouslymentioned

TensorBoard. Besides simply visualising different collected metrics, the goal of most

of these tools is to allow the developers to get a sense of the trained algorithm’s

performance, and to evaluate and compare it against previously trained agents

using the same algorithm or other algorithm’s completely.

When developing new algorithms, the most common barrier to proper compar-

ison with current state-of-the-art algorithms is a lack in reproducibility of results.

Benchmark environments, such as those provided by OpenAI Gym [Bro+16], lower

this barrier by providing unified interfaces against which many algorithms have

already been tested. However, the effects of extrinsic factors (such as hyperpara-

meters) and intrinsic factors (such as random seeds for environment initialisation)

make proper, reliable reproducibility a challenge, something for which current

evaluation practices do not account for [Hen+17]. Jordan et al. [Jor+20] propose a

new, ‘comprehensive evaluation methodology for reinforcement learning algorithms
that produces reliable measurements of performance’. The authors describe the goal
of their new evaluation technique as not trying to find methods (algorithms) that

maximise performance with optimal hyperparameters, but rather to find those

that do not require extensive hyperparameter tuning and can therefore easily be

applied to new problems. This leads to a preference for algorithms that are not

aimed at being the best at problems which are already solved (which applies to the

aforementioned benchmark environments), but instead those which are most likely

to succeed in new, unexplored environments.

In our framework, we attempt to provide users with visualisations for as many

different metrics as possible, to enable them to properly gauge the fitness of the

currently tested dynamic pricing method.

6

3 Simulating the Marketplace

This chapter will introduce the various components that make up a recommerce market
and how they were implemented in our simulation framework. We will take a brief
look at different market scenarios as well as how our customers make decisions. The
focus of this chapter will however lie on the vendors, the rule-based as well as the
ones trained using Reinforcement learning algorithms. For further information on
the overall framework structure refer to [Dre22], for detailed insights into our market
processes, see [Bes22].

3.1 Market scenarios

In our framework, we implemented a number of ‘market blueprints’ for classic

Linear Economy markets as well as for Circular Economy markets both with and

without rebuy prices. There are marketplaces available for each combination of the

following two features:

1. Marketplace type: Linear Economy, Circular Economy, Circular Economy

with rebuy prices (the recommerce market)

2. Market environment: Monopoly, Duopoly, Oligopoly

The marketplace type defines the number of prices the vendor has to set. In a Linear

Economy vendors only set prices for new items, in a Circular Economy prices for

refurbished items need to be set as well. Without rebuy prices, customers simply

return products to vendors ‘for free’. In order to simulate a proper recommerce
market, users can choose a Circular Economy with rebuy prices.

The market environment defines the number of competing vendors in the sim-

ulation: Monopolistic and competitive markets are available, with the Duopoly

simply being a particular version of an Oligopoly with only two competing vendors.

Depending on the chosen market environment one, two, or any number of vendors

can be chosen to be used in an experiment. Figure 3.1 shows a reduced overview of

the classes in our framework which concern themselves with the market simulation

and how they interact with each other during the simulation.

In the most common use case of our framework, the training of RL agents, only

the agent (or multiple agents in the case of training multiple RL agents against

each other) that is to be trained, needs to be configured by the user, as each market

environment is equipped with a pre-defined set of competitors that will play against

the agent defined by the user. To allow for more control over the simulation, users

are however also able to change these competitors to use any combination of

vendors they want - as long as they are a valid fit for the marketplace type and the

number of chosen competitors matches the market environment. How to configure

an experiment will be explained in Chapter 5.

7

Chapter 3 Simulating the Marketplace

Market

Linear Circular Circular + Rebuy

Vendors

Rule-Based

Reinforcement-Learning

set prices

Customer

buy products

Ownerturn into

return products

Figure 3.1: Interactions between classes concerning the market simulation.

3.2 Customers
Customers are at the centre of every type of marketplace, which makes them

an integral part of our market simulation. However, since each customer in the

real market is an individual with different backgrounds and makes purchasing

decisions based on personal preferences, modelling a realistic depiction of real-

world customers proves to be very difficult and time-consuming. For this reason we

decided to keep our initial implementation of the customers as simple as possible,

taking into account future extension and scalability concerns.

Most customers’ behaviour can be classified into one of a (non-exhaustive)

number of categories, such as those proposed in [EIT13], see Table A.1. As we are

focussing on dynamic pricing and our vendors can only change/influence the prices

of their products, we decided on primarily building customers that value price

over any other features a product may have, thereby incentivising our vendors to

make the most of their pricing power. This behaviour coincides with the proposed

shopping style of the Price Conscious or Value for money consumer.

To make Linear markets a little more complex and add another dimension than

just the new price of a product for vendors to consider, random quality values

are assigned to each vendor’s products at the start of an episode. Customers

in this economy model were modelled to take this quality value into account

when making their purchasing decisions, further reinforcing the shopping style

mentioned above. As Circular Economy markets are inherently more complex than

their linear counterparts (through the addition of two new price channels, which

influence each other through their effect on customer behaviour), it was decided to

remove the additional layer of quality values from these markets for the time being.

Within each simulated time step, after the various vendors have set their prices,

purchasing decisions are made by the customers. To save on computational time,

probability distributions are used to determine what part of the total number of

customers will decide to take which action, instead of simulating each customer

individually. See Definition 3.1 and Definition 3.2 for the way these distributions

are calculated for an exemplary recommerce marketplace, for further information

also see [Bes22].

8

Customers Section 3.2

▶ Definition 3.1. Let 𝑃𝑖,𝑛𝑒𝑤 be the price of the new and 𝑃𝑖,𝑟𝑒 𝑓 the price of the

refurbished product set by vendor 𝑖 , with 0 ≤ 𝑖 < 𝑛 and 𝑛 ∈ ℕ the number of

vendors in the market. Prices will always be within the range [0, 10]. We now

define 𝑟𝑛𝑒𝑤 (𝑃) as the function determining the customers’ preference ratio regarding
a new price 𝑃 set by any vendor:

𝑟𝑛𝑒𝑤 (𝑃) :=
10

𝑃
− 𝑒𝑃−8 (3.1)

and similarly, 𝑟𝑟𝑒 𝑓 (𝑃) as the preference ratio regarding the refurbished price:

𝑟𝑟𝑒 𝑓 (𝑃) :=
5.5

𝑃
− 𝑒𝑃−5. (3.2)

Additionally, there is a static preference 𝑟𝑛𝑜𝑡 that any customer will opt to buy no

product:

𝑟𝑛𝑜𝑡 = 1. (3.3)

◀

Following the numerators of the two fractions, customers adjust their determined

cost-benefit ratios to value a refurbished product to be 55% the quality of that of a

new product. This adjustment is necessary as there is no inherent quality value

for products in our simulated recommerce markets. Additionally, the constants

of 8 and 5 respectively in the exponent of the substracted exponential function

act as price thresholds above which it becomes exponentially more unlikely that a

customer will choose the respective product, as the value of the preference ratio

will decrease.

Definition 3.2 explains how we use the softmax function to normalise our values,

after which each preference ratio will be within the interval (0, 1), with all ratios

adding up to 1, as is required to use them as a probability distribution. We use

softmax, as it is able to deal with the possibly negative results of the two 𝑟 -functions.

▶ Definition 3.2. We keep the definitions from Definition 3.1. Now, let 𝑆 be the

sum of the exponentials of the preference ratios for all 𝑛 vendors and the preference

to buy nothing:

𝑆 := 𝑒𝑟𝑛𝑜𝑡 +
𝑛−1∑︁
𝑖=0

(
𝑒𝑟𝑛𝑒𝑤 (𝑃𝑖,𝑛𝑒𝑤) + 𝑒𝑟𝑟𝑒 𝑓 (𝑃𝑖,𝑟𝑒 𝑓)

)
. (3.4)

We can now normalise the preference ratios and determine the concrete probabilities

of customers choosing to buy the new, refurbished or no product by using the

softmax function on our preference ratios. Let 𝜋𝑖, 𝑗 be the probability that a customer

chooses to buy product 𝑗 from vendor 𝑖 , with 0 ≤ 𝑖 < 𝑛 and 𝑗 ∈ {𝑛𝑒𝑤, 𝑟𝑒 𝑓 }:

𝜋𝑖, 𝑗 :=
𝑒𝑟 𝑗 (𝑃𝑖, 𝑗)

𝑆
(3.5)

and let 𝜋𝑛𝑜𝑡 be the probability of a customer buying no product:

𝜋𝑛𝑜𝑡 :=
𝑒𝑟𝑛𝑜𝑡

𝑆
. (3.6)

All of these probabilities are collected in the set 𝛱 . Following the definition of

softmax, all probabilities in 𝛱 sum up to 1, as required. ◀

9

Chapter 3 Simulating the Marketplace

Following this conversion of the preference ratios, the market uses a standard

multinomial distribution to draw𝑚 samples out of the pool of probabilities 𝛱 , with

𝑚 ∈ ℕ being the number of customers making a purchasing decision in this step

of the simulation. The result of this sampling decides how many customers buy

which product. See Section A.2 for an exemplary calculation of such distributions.

As mentioned at the start of this section, the current decision-making process of

customers in our simulation is still quite basic. Section 7.1 introduces a number

of parameters and circumstances that can be used to make customer behaviour

more realistic. Through the modular approach when building the framework, any

customer behaviour implemented in the future can easily be added to the pool of

available options, as long as it manifests in the form of a probability distribution.

The total number of customers can also be split between different distributions

when drawing from the multinomial distribution (or any other distribution if so

desired).

3.2.1 Owners

Once a customer has decided to buy a product from any of the available vendors,

they turn into an owner. In the next step of the simulation, they are offered the

option of selling their now used product back to one of the vendors. If they decide

to do so, the vendor pays them the advertised rebuy price and adds the used product
to their inventory, from where it can then be sold as a refurbished product in the

following step.

In our simulation, all owners arememoryless, meaning that they do not remember

the original price they paid for the product. Additionally, each vendor in the

market is obligated to buy back any product, independent of the original vendor.

In each step every owner has the option to either keep the product, discard it

(meaning it is removed from the market and not sold back to a vendor), or sell it to

any one of the vendors in the market. Similar to the way we compute customer

purchasing decisions, the decisions owners take are also represented through

probability distributions. Within each time step, a constant percentage of all owners,

currently defined to be 5%, will either return or discard (throw away) their product,

with the rest of the owners keeping their product for at least one more time step.

When deciding what to do, owners act according to the following preference ratios:

▶ Definition 3.3. We keep the variables defined in Definition 3.1. Additionally,

let 𝑃𝑖,𝑏𝑎𝑐𝑘 be the price at which vendor 𝑖 is willing to buy back an owner’s product

(the rebuy price). 𝑃𝑖,𝑏𝑎𝑐𝑘 will be within the range of [0, 10]. For each vendor 𝑖 , we

define 𝑃𝑖,𝑚𝑖𝑛 as the vendor’s purchase option with the lowest price:

𝑃𝑖,𝑚𝑖𝑛 := min(𝑃𝑖,𝑛𝑒𝑤, 𝑃𝑖,𝑟𝑒 𝑓). (3.7)

We define 𝑟𝑏𝑎𝑐𝑘 (𝑃) as the function determining an owner’s preference ratio to sell

their product to vendor 𝑖 , 0 ≤ 𝑖 < 𝑛 regarding the rebuy price:

𝑟𝑏𝑎𝑐𝑘 (𝑃) := 2 · 𝑒
𝑃𝑖,𝑏𝑎𝑐𝑘 −𝑃𝑖,𝑚𝑖𝑛

𝑃𝑖,𝑚𝑖𝑛 . (3.8)

10

Vendors Section 3.3

Additionally, the owner’s discard preference 𝑟𝑑𝑖𝑠𝑐 is updated for each vendor as

follows:

𝑟𝑑𝑖𝑠𝑐 := min

(
𝑟𝑑𝑖𝑠𝑐,

2

𝑃𝑖,𝑏𝑎𝑐𝑘 + 1

)
. (3.9)

Meaning the owner is more likely to discard their product if rebuy prices are low

across the board. ◀

Equal to the way our customers work, we again normalise these preference ratios

using the softmax function defined in Definition 3.2 (substituting 𝑟𝑛𝑜𝑡 with 𝑟𝑑𝑖𝑠𝑐
and the ratios for new and refurbished products with 𝑟𝑏𝑎𝑐𝑘) and subsequently draw

samples from a multinomial distribution.

3.3 Vendors
Vendors are the main focus of our market simulation. While our framework will

not be able to reproduce all types of pricing models used in the real market, we

strive to model as many different models as possible (and feasible in the scope of

the project). Due to the modular nature of the framework, it is possible for users

to easily create and add their own pricing strategies in the form of a vendor that

can play on a market. This allows users to not only add other RL algorithms, but

also to define new rule-based strategies. For this reason, we also do not restrict the

usage of our monitoring tools to just RL agents, but allow users to monitor type of

vendor, independent of the underlying way in which it computes prices.

We will use four types of dynamic pricing models, as defined in ‘Dynamic

pricing models for electronic business’ [Nar+05], to describe the different models

we implemented in our framework. These categories are not mutually exclusive,

and many agents belong to more than one category.

3.3.1 Inventory-based models
These are pricing models which are based on inventory levels and similar para-

meters, such as the number of items in circulation (items which are currently in

use by customers). In our framework, almost all rule-based agents consider their

inventory levels when deciding which prices to set. The only exception to this

rule are the simplest of our agents, the FixedPriceAgents, which will always set the

same prices, no matter the current market state and competitor actions. The prices

these agents will set are pre-determined through the user’s configuration of the

experiment and will not change over the course of the market simulation.

Inventory-based models are comparatively easy to implement, as they only

depend on data immediately available to the vendor. This has the advantage that

rule-based agents which fall into this category are relatively simple to create and

modify. Examples of Inventory-based agents in our framework can be found in the

RuleBasedCERebuyAgent, one of the first rule-based agents we created. This agent

does not take pricing decisions of its competitors in the market into account, but

simply acts according to its own storage costs, always trying to keep a balance

between having enough refurbished products to sell back to customers and keeping

storage costs low. It does this by checking into which of four possible ranges the

current number of stored products falls. The more products the agent already has

in storage, the lower it sets the rebuy price (to ‘prevent’ customers from returning

11

Chapter 3 Simulating the Marketplace

more products) and the lower it sets the price for refurbished products, to empty the

storage more quickly and prevent high storage costs. While its performance is not

necessarily bad, it is still one of the weakest competitors currently available in the

framework. For the full implementation logic of the agent’s policy, see Figure A.1.

For a comparison of the RuleBasedCERebuyAgent with a more sophisticated Data-
driven model see Figure 6.8.

3.3.2 Data-driven models
Data-driven models take dynamic pricing decision-making one level further. They

utilise their knowledge of the market, such as customer preferences, past sales

data or competitor prices to derive optimal pricing decisions. Aside from the

aforementioned FixedPriceAgents and the basic RuleBasedCERebuyAgent, all of
our other rule-based agents fall into this category. One of the most prominent

examples of a Data-driven model is the RuleBasedCERebuyAgentCompetitive, an
agent whose basic goal is to always try and undercut competitor prices, while also

keeping track of the current amount of items in storage. In its policy, this agent

first always undercuts the new price of all other competitors. Then, similar to the

RuleBasedCERebuyAgent, the agent looks at the current amount of stored products

and depending on the range, sets lower prices for refurbished items and higher

rebuy prices, while always trying to give customers a better deal than any of the

competitors. Again, the full implementation logic of this vendor’s policy is available

in the Appendix, under Figure A.3.

Notably, all of our Data-driven models are also Inventory-based to a certain extent,

as handling storage plays a big part in a Circular Economy market setting where

used products need to be bought back from customers and subsequently undergo

refurbishment while in inventory of the company. Data-driven models have proven
to be the most competent rule-based agents in our recommerce market scenario, in

particular the above described RuleBasedCERebuyAgentCompetitive, which is able

to outperform most other rule-based agents, both Inventory-based and Data-driven
models (please refer to Figure A.11 (a)).

3.3.3 Game theory models
Game theory concerns itself with the study of models for conflict and cooperation

between rational, intelligent entities [Mye97]. It is therefore often applicable in

situations where competing individuals, acting rationally and selfishly, interact

with each other. In our framework, most competitors in the market are influenced in

their decision-making processes by the actions of other participants of the scenario.

This is especially true for the Reinforcement learning agents, which base their policy

on the received market states, which include their competitor’s actions. While

none of our rule-based agents have been specifically designed to act according to

game theoretic strategies, due to the fact that almost all of them consider their

competitors prices in their pricing decision and due to the nature of RL agents trying

to maximise their own profits without regard to their competitors performance,

behaviour according to Game theory can sometimes be observed. It can be observed

especially well in the beginning of training sessions, where rule-based competitors

often struggle to achieve high profits while the RL agent is making great losses,

but are then able to increase their profits as the trained agent starts to make better

12

Vendors Section 3.3

decisions as well. Examples of such behaviour can be found in the diagrams shown

in Chapter 6, such as in Figure 6.1.

During training RL agents observe the market state, which includes prices and

sales data not only of themselves but also the other vendors in the market. Using

this data, the algorithms try to predict how their prices will influence customer

behaviour as well as the competing vendors. In some cases, depending on the

concrete behaviour of the competitors, vendors may cooperate in driving prices

higher together. In other cases the agents may act seemingly irrationally, lowering

prices in order to force their opponents to lower theirs as well. An example of such

behaviour can be seen in the development of prices for new items set by the two

competing vendors in Figure 6.3 (d).

3.3.4 Machine learning models
All of our Reinforcement learning agents fall into this category. As they are not the

focus of this thesis, we will not go into detailed explanations of the various models

used. For a comparison of the performance of different Reinforcement learning

algorithms in the context of our simulation framework, please refer to [Gro22].

The following will give a short overview over the different algorithms used in our

framework.

There are two ‘origins’ of the algorithms in our framework. In the earlier phases,

Q-Learning and Actor-Critic algorithms were custom implemented by us. Later

on we used the Stable-Baselines library to incorporate a greater number of pre-

implemented algorithms into our framework. While these are not as easily config-

urable, they can quickly be used without much additional work.

Q-Learning: Q-Learning agents were the first RL agents we introduced in our

framework, as the algorithm is one of the easier ones to implement [KLM96]. The

Q-Learning algorithm used in our framework is implemented using the PyTorch
framework (see [Pas+19]). However, the drawback of using Q-Learning in our

framework is that it can only be applied to discrete action and state spaces. This

means that when using Q-Learning only ‘whole’ prices can be set by the vendors

and any decimal places must be omitted. This of course limits the framework

in its realism, as the fine-tuning of prices using decimal places can be critical in

influencing customer decisions. In the initial exploration-phase of our simulation

framework this was not a problem, as relatively small action spaces were used,

adapted to this limitation. But by now, our simulation framework also supports

continuous action and state spaces, which allows more complex algorithms such

as those introduced in the sections below to function. While approaches for Q-
Learning algorithms that can work with continuous action and state spaces have

been presented in the past [GWZ99], [MPD02], we have chosen not to implement

such an algorithm in our framework, but rather explore approaches other than

Q-Learning, such as Actor-Critic algorithms, introduced below.

13

Chapter 3 Simulating the Marketplace

Actor-Critic: Actor-Critic algorithms aremore complex thanQ-Learning algorithms

and have therefore been implemented later in the process. They are structured

different then Q-Learning algorithms in the way that they are ‘split’ into two parts:

The actor is responsible for selecting actions, while the critic is responsible for

critiquing the actions taken by the actor, thereby improving its performance [SB18].

Similar to the Q-Learning agents, the Actor-Critic algorithms have also been imple-

mented by us. In total, one discrete and two continuous Actor-Critic agents can be

used, in addition to those provided through Stable-Baselines.

Stable-Baselines: Stable-Baselines provides a number of open-source implement-

ations for various RL algorithms. In our framework we use the latest version of

these algorithms, through Stable-Baselines3 [Raf+21]. The advantage when using

algorithms provided through Stable-Baselines lies in the fact that they need close

to no custom implementation from our end, we can instead interact with them

through very simple interfaces. This cuts down on the amount of time and effort

that needs to be spent developing, implementing and maintaining these powerful

algorithms, and allows us to introduce a higher number of algorithms than would

otherwise be possible.

Currently, five different Stable-Baselines3 algorithms are used in our simulation

framework, see the Stable-Baselines3 documentation [Bas22] and the referenced

papers for more information about the different algorithms:

• A2C: Advantage-Actor-Critic [Mni+16]

• DDPG: Deep deterministic policy gradient [Lil+15]

• PPO: Proximal Policy Optimization [Sch+17]

• SAC: Soft Actor-Critic [Haa+18]

• TD3: Twin-delayed deep deterministic policy gradient [FHM18]

We will be using some of these algorithms in our experiments and briefly compare

them with our rule-based approaches using our various monitoring tools which

are introduced in the next chapter, Chapter 4.

14

4 Approaches to
Monitoring Agents

In this chapter we will take a look at the different approaches we took to monitoring
agents in our framework, explaining the reasons why we chose to implement specific
features and how they help us in determining an agent’s strengths and weaknesses.

4.1 Monitoring use cases
Our workflow (which will be explained in more detail in Chapter 5) can generally

be split into two parts when it comes to monitoring and evaluating agents: during
and after training. When talking about the workflow we refer to the process of

configuring and starting a training session, where a Reinforcement learning agent

is being trained on a specific marketplace against competitors. The workflow also

includes the subsequent collection of data used to evaluate an agent’s performance.

We are also introducing the term of the complete agent in this section, which will be

used to refer to both RL agents that have completed a training run and rule-based

agents, which do not need training.

As mentioned above, we split our monitoring tools into the following two cat-

egories:

1. During training (Section 4.2): Having data available as soon as possible

without having to wait for a long training session to end is crucial to an

efficient workflow. Our framework enables us to collect and visualise data

while a training session is still running. This allows users to always be well-

informed about the currently running experiments. In some cases, when an

agent’s performance is severely lacking, users may want to stop a training

session before it has finished, which is enabled through these monitoring

tools. We also include the Live-monitoring tool in this category, which runs

directly after a training session has finished, see Section 4.2.2.

2. On complete agents (Section 4.3): After a training session has finished we

have a complete and final set of data available for an agent. This enables us to

run more thorough and reliable tests. These can include simulating runs of a

marketplace to gather data on the agent’s performance in different scenarios

and against different competitors, or running a static analysis of the agent’s

policy for different market states. The tools available for trained agents are

in the same way also usable on rule-based agents.

In the following sections, we will take a look at the tools our framework provides

for monitoring agents, distinguishing between the two general types of monitoring

mentioned above. The goal of these sections is to give a short overview of each tool,

how and why they were implemented and what value they offer to the framework

as a whole. In Section 7.2 we will discuss how the different tools could be improved,

explaining how these additions could benefit the entire workflow and enrich the

overall experience.

15

Chapter 4 Approaches to Monitoring Agents

4.2 Monitoring during training
When talking about monitoring agents during a training session, we are always

referring to Reinforcement learning agents, as rule-based agents always perform

the same and cannot be trained. But even though they cannot be trained, our

monitoring tools listed in the next section, Section 4.3, can still be applied to rule-

based agents as well, as users may want to compare different rule-based strategies

against each other or measure the strategy’s performance on a market before

training an RL agent against it.

Monitoring agents while they are still being trained enables users to be more

closely connected to the training process. Ultimately, the goal of such monitoring

tools is to be able to predict the estimated ‘quality’ of the final trained agent as

reliably as possible while the training is still going.

4.2.1 TensorBoard
The TensorBoard is an external tool from the RL library TensorFlow [Aba+16]. With

just a few lines of code a training session can be connected to a TensorBoard

instance. We are then able to pass any number of parameters and metrics we deem

interesting or useful to the TensorBoard, which then offers visualisations for each

of them, updating live as the training progresses. In addition to metrics specific

to our market simulation, which can be found in Table A.3, the TensorBoard also

visualises a number of specifically training-related data points, such as the number

of episodes simulated per second. To access these web-based visualisations, a local

server needs to be started. The diagrams created using the TensorBoard are an

immensely useful tool for quickly and easily visualising data and offering a first

rough comparison of competitors in the market. Aside from simple visualisations,

TensorBoard also offers many native plugins and even enables users to write their

own [Ten20]. Plugins such as theWhat-If Tool ([Wex+20], [PAI22]), which allows

users to feed trained models with hypothetical situations to study their behaviour,

can have a great influence on the way users interact with the TensorBoard and

their machine learning models.

4.2.2 Live-monitoring
Unlike the TensorBoard, the monitoring tools summarised under the term Live-
monitoring were built by our team, utilising the Matplotlib [Hun07] library for

visualisation. The Live-monitoring tool combines two use cases:

First, it creates visualisations for all data recorded during the training, similar to

those provided through the TensorBoard. This needs to be done to be able to quickly

access the visualisations after the training has concluded, as the TensorBoard

relies on abstract data files and needs to run on a local server in order to create

visualisations. By taking the data we have at the end of the training and using our

own visualisation tool, we create two types of diagrams: Scatterplots, which contain

all samples for a certain parameter (see for example Figure 6.3 (c)) and lineplots,

which show smoothed data, such as it would be available in the TensorBoard (see

for example Figure 6.1).

Secondly, the tool simulates a market scenario identical to the one used during

training an additional time. To understand why we do this, we need some additional

16

Monitoring complete agents Section 4.3

information: during a training session, ‘intermediate’ models, as we will call them,

are being saved in regular intervals. These models contain the current policy of

the RL agent and can be used the same as any other model of complete agents, the

only difference being the quality of the agent, which can change over the course of

a training run, both for the better and the worse. These intermediate models can

then be used by a range of monitoring tools available to us. Since the models only

contain the current policy of an agent, but not the history of states and actions

preceding the model, we need to run separate simulations on these models to be

able to analyse and evaluate them. For this we utilise our Agent-monitoring toolset

(explained in detail in Section 4.3.1). In Section 6.2.1 we will discuss the results of a

training session using the Live- and Agent-monitoring tools.

4.3 Monitoring complete agents
For monitoring trained RL and rule-based agents, we offer three major tools: The

Agent-monitoring tool allows users to simulate a large number of episodes to visu-

alise bigger trends, the Exampleprinter simulates a single episode, offering detailed

insights into market states using an overview diagram, and the Policyanalyser is

a static tool which can be used to analyse a vendor’s reaction to different market

states and competitor actions.

4.3.1 Agent-monitoring
The Agent-monitoring is a highly configurable tool for monitoring and evaluating

different combinations of agents and marketplaces. Figure 4.1 shows how the tool

works internally.

In addition to parameters provided to the marketplace and monitored agents, the

following parameters can be used to configure the Agent-monitoring tool itself:

Episodes: This parameter decides how many independent simulations are run in

sequence. At the start of each episode, the market state will be reset and randomised.

Within an episode, vendors run through a configurable amount of time steps, during

each of which they set prices (depending on the chosen economy type, this can

range from only one price for new items to three prices, including a rebuy price for

used items) and a set number of customers interact with them.

Plot interval: Some older diagram types enable the user to view averaged or

aggregated data over a period of time. The plot interval parameter decides the size

of these intervals. Smaller intervals mean more accurate, but also more convoluted

data points. Computational time also increases with a smaller interval size.

Marketplace: Using this parameter, the user can set the marketplace on which

the monitoring session will be run. Refer to Section 3.1 for an explanation of the

different available marketplaces.

Separate markets: This parameter is a boolean flag that determines the way

in which the monitoring session will handle the agents given by the user. If the

flag is enabled, each agent will be initialised on a separate instance of the chosen

marketplace, meaning that the agents will be monitored independent of each other.

Running the Agent-monitoring with this functionality takes a lot longer than if

the flag were disabled, as the whole marketplace is simulated once for each agent.

17

Chapter 4 Approaches to Monitoring Agents

User Agent-Monitoring Market

Provide
configuration files

A

Initialise requested
agents

Initialise requested
market

Receive data

Initialise monitoring
instance

Start monitoring
session

Simulate episode

All
episodes

done?

Yes

No

Record data

Print statistics to
console

Create Plots

Live-
monitoring?

Yes

No

Create additional
Plots

Receive statistics

Save all diagrams

Figure 4.1: The internal workflow when running an Agent-monitoring session. Table A.3

lists the different types of diagrams created by both the Live- and Agent-monitoring and

which of the recorded metrics they visualise.

18

Monitoring complete agents Section 4.3

While it may seem like the same results could be reached by simply starting multiple

monitoring sessions with a different agent each time, this is not the case. Using this

flag instead, it is ensured that all agents get the exact same market states for each

episode. By running multiple marketplaces in parallel using the separate markets
flag, we can match the simulations as closely as possible. The most prominent

use case where this flag is enabled is during the Live-monitoring after a training

session, where all intermediate models are being monitored on separate markets.

If the flag is disabled, the monitoring tool will initialise only one marketplace and

set the passed agents to directly compete against each other on this marketplace.

This functionality is most useful when monitoring only a single agent, trying to

determine its specific strengths and weaknesses against certain opponents, as it

will complete a lot faster than if the flag were enabled.

Agents: Depending on the chosen marketplace, only a select number of agents

can be chosen to be monitored, as each agent is built to interact with a specific

type of marketplace. First off, all agents belong to one of the two major categories:

Reinforcement learning agent or rule-based agent (for a more detailed overview

see Section 3.3). RL agents can only be monitored on the marketplace type and

market environment they were trained on, as these define the number of inputs and

outputs the agent expects. Rule-based agents can only be used on the marketplace

type they were built for, as each of them makes assumptions about the number of

prices they will need to set, but the market environment may be freely chosen. This

leads to not all marketplace types having the same amount of rule-based vendors

available. Following their importance for our simulation framework, the Linear

Economy has the least and most often weakest vendors available, while the more

refined competitors are most of the times only available as a version compatible

with the Circular Economy with rebuy prices.

During each episode and for each vendor, all market events are being recorded.

At the end of the monitoring session, the collected data is evaluated in different

visual formats. First of all, all data that would be available to see in the TensorBoard
during a training session is visualised using density plots. These plots can be used

to compare the vendors in a more granular way, if for example the effect of a

parameter on the customer’s sell-back behaviour of used items should be tested.

Another visualisation that is created is a histogram containing the cumulative

profits per episode for each agent, plotted against each other (see for example

Figure A.11 (b)). This allows for a quick overview to see which agent had an overall

better performance. One additional type of diagram is only created if the Agent-
monitoring is run through the Live-monitoring tool: Violinplots. These plots, which

are created for all data points available through TensorBoard (also see Table A.3),

depict distributions using density curves, accentuating the minimum, maximum

and median values. Violinplots are used by us to compare different training stages

of an agent, as small policy changes can have great impact on these values. For

exemplary Violinplots created after training, see Figure 6.4.

Aside from monitoring after a training session, a common use case of the Agent-
monitoring tool is to test trained agents against competitors other than the ones they

were trained against. This is done to test an agent’s capacity to adapt to different

circumstances, an important factor in deciding its quality, as its competitors in the

real market will differ from any it has encountered in training, due to the sheer

vastness of options when it comes to dynamic pricing models available nowadays.

19

Chapter 4 Approaches to Monitoring Agents

4.3.2 Exampleprinter
The Exampleprinter is a toolmeant for quickly evaluating amarket scenario in-depth.

When run, each action taken by the monitored agents is being recorded, in addition

to market states and events such as the number of customers arriving and the

amount of products thrown away. At the end of this quick simulation, an animated

overview diagram is created, which shows all actions and their consequences for

each step in the simulation, see for example Figure 6.5. Due to the large amount

of data that is being collected and visualised and the overhead would come with

doing so for hundreds of episodes, we chose to disconnect this functionality from

large-scale tools such as the Agent-monitoring. While the Agent-monitoring could

be seen as a tool that imitates Macro-economic behaviour, simulating hundreds of

days through hundreds of episodes, the Exampleprinter instead simulates only one

day, recording and visualising all data collected during that time.

4.3.3 Policyanalyser
The last tool we want to introduce is the Policyanalyser. The Policyanalyser is our
only tool which does not simulate a market. Instead, the tool can be used to monitor

an agent’s reaction to different market states. The user can decide on up to two

different features to give as an input, such as a competitor’s new and refurbished

prices, and the Policyanalyser will feed all possible input combinations to the agent

and record its reactions. When initialising the Policyanalyser, the user defines a
number of parameters: The agent whose policy should be analysed, as well as the

marketplace and the competitors that should be used, just as is done for all the

other tools. Additionally, the user defines a template market state, a market state

containing all values that are passed to the analysed agent, such as the number

of items currently in circulation and the prices of competitors. Lastly, a list of

analysed features needs to be provided, which defines one or two features of the

template market state that should be varied. When the Policyanalyser is run, these
features are inserted into the template market state, overwriting the initial values

and creating a new combination. This new market state is then passed on to the

policy-method of the analysed agent (example policies of some of our rule-based

agents can be found in Section A.3), and its reactions are recorded and visualised.

See Section 6.2.4 for use cases of this tool.

The Policyanalyser is the monitoring tool which operates on the smallest scale

out of all the tools we built for our framework. It allows users to define any market

state they want and to then accurately monitor a vendor’s reactions to changes to

this specific state. While the tool can just as well be utilised to test new rule-based

strategies, it is very much meant to be used as a way to understand RL agents

better, as their policies are not immediately visible to the user and must therefore

be discovered through tools such as the one’s we built.

20

5 The recommerce Workflow

The main goal of the market simulation framework is to provide a simple-to-use but
powerful tool for training Reinforcement learning algorithms on highly configurable
markets for users in both a research and a business context. To achieve this, multiple
components had to be developed and connected to create the workflow we now provide.
This chapter will introduce the most important parts of the workflow.

When working with our simulation framework, users can choose from two

options: First, it is possible to use our tool via a custom command-line interface

(CLI). Alternatively, users can interact with the framework through a web-interface,

which utilises Docker for remote-deployment of tasks issued by the user. For

detailed insights into our web-interface and remote deployment processes, see

[Her22].

Figure 5.1 depicts the common workflow activities in our framework. For all

possible tasks, the user needs to provide configuration files, which define both the

task to be worked on and parameters that influence market and agent behaviour,

see Section 5.1. After the configuration files have been validated, the simulation

framework initialises the requested marketplace and agents and then starts the

requested task, for which there are currently three options provided through the CLI

or web-interface: Training, Agent-monitoring and Exampleprinter. You may have

noticed that one of our monitoring tools is missing from this list, the Policyanalyser.
As is explained in Section 7.2.4, this tool must unfortunately still be started manually

by the user, as it has not been integrated into the rest of the workflow yet.

At the end of the respective task, the user is always provided with the various

diagrams and data (e.g. trained RL models) collected during its runtime, which can

then be used in subsequent tasks.

5.1 Configuring the run

Configuration is one of the most important aspects of the workflow. Without it,

each simulation and training session would produce similar, if not the same results.

By tweaking different parameters of a run, market dynamics can be changed and

agent behaviour and thereby quality be influenced. The goal of our monitoring

tools is to enable users to assess the extent to which each parameter influences

certain characteristics of the training and/or monitoring session and to enable them

to make informed decisions for subsequent experiments.

Ultimately, all configuration is done using various .json files which contain

key-value pairs of the different configurable items. We further differentiate between

different groups of configurations, which means that hyperparameters influencing

the market, such as maximum possible prices or storage costs, are being handled

separate from parameters needed for RL agents, such as their learning rates. This

allows users to easily change and tweak parameters involving different parts of the

framework. Examples of such configuration files can be found in Section A.4.1.

21

Chapter 5 The recommerce Workflow

User Training Market Monitoring

Provide
configuration files

A

Initialise
requested agents

Initialise
requested market

TaskTraining ExampleprinterRun agent
training

Run
Exampleprinter

Training
ended?

Yes

No Monitoring Run
Agent-monitoring

Run
Live-monitoring

Save models and
training data

Save diagramsReceive data

Receive progress
updates

Figure 5.1: Diagram depicting possible workflows, without webserver interaction.

5.2 The monitoring workflow
Within the greater recommerce workflow, there are two points in time when our

monitoring tools are or can be used. While a training session is running, the

TensorBoard tool is automatically used to record metrics and give insights into the

current training run, by creating visualisations of current market states. By saving

intermediate models, the Live-monitoring enables users to compare agent models

saved at different times within the training process, after it has concluded. This

can be especially useful when trying to determine the most effective amount of

training steps after which a model does not improve further, to optimise future

runs. After the training has finished, or at any point disconnected from a training

session, our tools described in Section 4.3 can be used to further analyse the trained

models. If a training session is terminated by the user before it has completed, the

Live-monitoring tool will not be run, but all intermediate models saved up to that

point can still be used to monitor the agent’s policy at that point in time. The next

chapter, Chapter 6, is dedicated to the monitoring workflow, where we will first

run a training session, and then monitor and evaluate the results we get from it.

22

6 Monitoring an Experiment

In this chapter we will put the tools and workflows described in the previous sections
to use. We will train a Reinforcement learning agent and then monitor and analyse it
using all of the tools at our disposal.

6.1 Setting up the experiment
Before starting our monitoring, we will need to conduct an experiment, where an

RL algorithm is being trained on a market environment. For our experiment, we

will train an RL agent using the SAC-algorithm [Haa+18] on a Duopoly marketplace

with rebuy prices. The agent will be trained playing against a rule-based agent,

more specifically the RuleBasedCERebuyAgentCompetitive, as presented in Section

3.3.2. The configuration files for this experiment can be found in Section A.4.1.

We will refer to this experiment as the SAC-Duopoly experiment. To ensure that

we are evaluating an agent with a performance that is to be expected with the

provided parameters, we will conduct the experiment multiple times to be able

to identify outliers in the data, the results of these multiple runs are shown in

Figure 6.1. Afterwards, all diagrams will have been taken from the same experiment

run, denoted as SAC-Duopoly_1 in Figure 6.1 (a).

For the interested reader, a number of diagrams created through a second experi-

ment are available in the Appendix under Section A.5.2. In this second experiment, a

PPO-Agent [Sch+17] was trained against four rule-based competitors on a Circular

Economy market with rebuy prices. The configuration files for this experiment can

be found in Section A.5.1.

6.2 Experiment results
In the following sections we will use our different monitoring tools on the results of

the SAC-Duopoly experiment. We will start with the Live-monitoring tool, which

runs automatically after the training run has completed and creates over 90 graphs

and diagrams already. Due to this high number of available diagrams, we will

always only look at a curated selection, highlighting those which give the best

insights into the trained agent.

6.2.1 Live- and Agent-monitoring
This section will focus on the diagrams created by the Live-monitoring tool after

training, which always runs an Agent-monitoring session as well, to immediately

provide the user with many additional useful diagrams without the need to run the

tool manually.

A commonly asked question when deciding on the quality of an RL agent is their

stability. If an algorithm is stable, the trained agent will produce similar results

23

Chapter 6 Monitoring an Experiment

(a) SAC-Duopoly_1, 2,000 training episodes (b) SAC-Duopoly_2, 2,000 training episodes

(c) SAC-Duopoly_3, 2,000 training episodes (d) SAC-Duopoly_4, 6,000 training episodes

Figure 6.1: Profit per episode of four different training runs of an SAC-Agent on a Duopoly

market.

over multiple training sessions, on the condition that the parameters do not differ.

Not only the rewards achieved at the end of the training will be very similar, but

also the amount of episodes needed to reach certain thresholds. In the case of the

SAC-Duopoly experiment, we ran the same configuration four times: The first three

experiments were run using the exact same parameters, for the fourth experiment

the amount of training episodes were tripled, meaning that the SAC-Agent had

more time to alter its policy. Figure 6.1 shows the results of these four training

sessions, created using the Live-monitoring tool and visualising the data collected

during the training process. Although many other graphs are created (Table A.3),

the visualisation of the mean profit per episode (calculated by taking the mean

reward over all time steps within the episode) of the agent is the most convenient

to use when evaluating an agent’s performance, as profit is the parameter which

the agent is trying to optimise.

Figure 6.1 shows the stability of the SAC-Agent very well. The agent not only

reached the break-even threshold of a reward of 0 after around 150 episodes in each

of the four training runs, but no matter the total length of training (see the model

in Figure 6.2 (d), which was trained three times as long as the others), the profit

would always stabilise and stay at around 670. Had the monitoring tools shown

that the agent performs worse than expected in some of the experiments, we could

conclude that this particular algorithm is not fit for the type of work required by

our market simulation.

We can also observe that the profits of the SAC-Agent and the rule-based agent

(in the case of this experiment, a RuleBasedCERebuyAgentStorageMinimizer) seem to

be closely linked to each other in this particular scenario. In the beginning of each

24

Experiment results Section 6.2

(a)Model trained for 500 episodes (b)Model trained for 1,000 episodes

(c)Model trained for 1,500 episodes (d) Model trained for 2,000 episodes

Figure 6.2: Probability densities for achieving a certain profit for four different training

stages of the model trained during the SAC-Duopoly_1 experiment.

experiment, when the RL agent still knows very little about the market and makes

great losses, the rule-based agent also has a hard time to perform well. However, as

soon as the SAC-Agent starts to perform better, the rule-based agent is also able

to increase its mean profits at around the same rate as the SAC-Agent. Even more

interestingly, the agents not only increase their profits at the same rate, but also

very quickly arrive at a point where they earn the same mean amount as the other.

This might lead to the conclusion that the two competitors’ policies align closely

with each other. To validate this claim, another type of diagram created by the Live-

monitoring tool can be used: the densityplots. These diagrams visualise probability

densities for the various datasets recorded. While the diagrams shown in Figure 6.1

visualise data that was collected during the training run, densityplots are created

by running the Agent-monitoring tool, where the marketplace is simulated an

additional time. This allows us to use the ‘intermediate’ models we saved during

the training run (see Section 4.2.2) and compare the RL agent’s policies at different

points in time during the training.

Figure 6.2 shows the densityplots for the mean profit-per-episode for four differ-

ent training stages of the SAC-Duopoly_1 experiment. From this it can be concluded

that the claim that the two competitors’ policies align closely is incorrect: even

though the mean profit within an episode is always very similar (Figure 6.1 (a)),

the SAC-Agent achieves rewards which lie closer together, while the rule-based

agent’s rewards have more of a spread.

We can also observe that the models which were trained for longer are not

necessarily better or even the same quality of the models with less experience.

There is a significant improvement going from the model shown in Figure 6.2 (a) to

25

Chapter 6 Monitoring an Experiment

the one in Figure 6.2 (b), this shift in the probability density curve can be correlated

with the maximum mean rewards the two models could achieve during the training:

For the model trained for 500 episodes, this was around 450, for the other it was

about 660 (Figure 6.1 (a)). Both of these values have respectively high probabilities

of being reached during the second simulation after the training has concluded, in

case of the model trained for 1,000 episodes, this even coincides with the maximum

in the densityplot (Figure 6.2 (b)). Going from the model trained for 1,000 episodes

to the next one, which was trained for 1,500 episodes (Figure 6.2 (c)), both the

probability densities and the mean rewards stay very close to each other. From

this we can conclude that training the SAC-Agent for more than 1,000 episodes

is very likely to not have a great effect on the maximum reward achievable by

the algorithm. Going from the model trained for 1,500 episodes to the last one,

saved at the end of the training (Figure 6.2 (d)), we can however see a deterioration

in performance: While the mean rewards hardly changed (see Figure 6.1 (a)), the

probability density curve got wider at its base, extending out further towards a

reward of 400, and lowering the probability of achieving a reward of 700 from

previously above 0.5% to under 0.4%. This means that the model which was trained

for the longest time produces less predictable results than those trained less. This is

a tame version of so-called Catastrophic Forgetting, which will be explained further

in Section 7.2.1. The insights gained by our monitoring tools combined with the

fact that we save ‘intermediate’ models of the Reinforcement learning agent during

training allows us to find the optimal trained model to use for further investigation

and eventual deployment in the real market. In the case of the SAC-Duopoly_1
experiment, the optimal model would be the one trained for 1,000 episodes.

6.2.2 Further investigation
Besides the mean profits achieved during training, our Live-monitoring tool offers

many other useful diagrams as well, a selection of which will be shown in this

section. The graphs used will be from the SAC-Duopoly_1 experiment.

Users may ask themselves how the profits achieved by the different vendors are

split between the two available retail channels of new and refurbished products,

how many products were bought back from customers or how much the vendors

had to pay for storage of these used products. For all of these questions, the Live-

monitoring (together with the Agent-monitoring) tool offers two types of diagrams:

simple lineplots as shown in Figure 6.1 can be used, as well as scatterplots which

visualise the exact data recorded during the episode, instead of the trends shown

by the lineplots. Figure 6.3 shows a number of different metrics, all of which are

available as both linepots and scatterplots, see Table A.3 for a complete list.

Many connections can be made when evaluating different diagrams side-by-

side, such as the observation of the initially high storage costs of both vendors in

Figure 6.3 (a) being caused by high rebuy prices set by the agents (Figure 6.3 (b)).

High rebuy prices make it likely that customers are willing to sell back their

products, which leads to (over)full inventories and high storage costs. High storage

and rebuy costs will have then caused a policy change to set lower rebuy prices,

thereby de-incentivising customers to sell back as many products as they used to

and lowering the agent’s storage costs, increasing the profit margin.

The next pair of diagrams shows the connection between a high number of

customer that buy nothing, as visualised in Figure 6.3 (c), correlating to high

26

Experiment results Section 6.2

(a) Storage costs for bought back products (b) Rebuy prices set by the vendors

(c) Customers that bought nothing (d) New prices set by the vendors

Figure 6.3: Diagrams visualising various data points collected during training of the SAC-
Duopoly_1 experiment.

prices for new products, shown in Figure 6.3 (d). As mentioned in Section 3.2, the

customers implemented in our framework make their purchase decisions based on

the prices they are presented with, which leads to many customers choosing to buy

nothing before paying prices as high as set by the vendors in this experiment.

If the Agent-monitoring is run after a training session (i.e. is provided with

intermediate models), it also creates violinplots for all of the collected metrics

(Table A.3). A selection of such diagrams can be found in Figure 6.4, showing

the respective mean profits (Figure 6.4 (a)) and storage costs (Figure 6.4 (b)) for

each intermediate model of the trained SAC-Agent. As explained in Section 4.3.1,

these plots visualise the probability distributions as shown in Figure 6.2 in a more

condensed way, providing additional data such as actual maximum, minimum and

median values as well. The biggest upside of the Violinplots is that they are able to

show the distributions for all intermediate models in one diagram, which allows

for even better comparisons. Looking at Figure 6.4 (a) we can immediately see the

difference in the spread of mean profits achieved between the models trained for

1,500 and 2,000 episodes respectively, for which we previously needed to consult

and compare two different diagrams (Figure 6.2 (c) and Figure 6.2 (d)). Similarly,

Figure 6.4 (b) is able to tell us something else we did not know before: the longer a

model was trained for, the more likely it is that it will induce high storage costs, a

trend which was not necessarily visible in Figure 6.3 (a).

Violinplots do however not replace the need for densityplots, as both have an

equally useful way of displaying data. While the violinplots show rough distri-

butions plotted against the real numbers on the y-axis, the densityplots show the

concrete probability values for each possible data point.

27

Chapter 6 Monitoring an Experiment

(a) Mean profits for all intermediate models (b) Storage costs for all intermediate models

Figure 6.4: Violinplots showing a selection of collected data when running the Agent-

monitoring after a training session.

6.2.3 Exampleprinter

All of the diagrams shown in the previous section were created as part of the

automatic monitoring done after a training session has concluded. There are

however two other tools at our disposal to monitor the trained RL agent after

they have been trained. For this, we only need the intermediate models saved

during and at the end of training. In the case of the SAC-Duopoly_1 experiment,

we will be using the model saved after 1,000 episodes, as we discovered it had

the best performance, see Section 6.2.1. The first tool we will now utilise is the

Exampleprinter, as introduced in Section 4.3.2.

To configure this monitoring run, we will again need three configuration files:

one defining the task to be done (for which we will reuse the one shown in Fig-

ure A.4, only exchanging the ‘task’ keyword), and one for both the hyperparameter-

configuration of the market and the SAC-Agent, for which we will also reuse the

configuration files used for training (Figure A.5 and Figure A.6). By using the same

configuration files again, we can emulate the market the agent was initially trained

on as closely as possible.

At the end of the monitoring session, we receive an animated overview diagram

that cycles through all time steps, allowing us to identify and examine potentially

interesting time steps in the simulation. Due to the nature of this diagram being

animated, we will not be able to thoroughly examine the results of this monitoring

tool in this thesis. Instead Figure 6.5, which shows the 17
𝑡ℎ
time step of the simula-

tion, can be used to gain an understanding of the information that can be gained

from this tool.

6.2.4 Policyanalyser

After an RL agent has been succesfully trained, or after implementing a new rule-

based pricing method, users may want to analyse specific characteristics of the

agent’s policy using the Policyanalyser. We will show both use cases of the Policy-

analyser, by first analysing the policy of our trained SAC-Agent and then analysing

the policy of the rule-based RuleBasedCERebuyAgentStorageMinimizer. As was
explained in Section 4.3.3, we need to define both a marketplace and a template

market state before running the Policyanalyser. For our experiments, we will use a

Circular Economy with rebuy prices and the following default market state:

28

Experiment results Section 6.2

Figure 6.5: Actions and market states during step 17 of the Exampleprinter session.

• Number of products in circulation: 75

• Competitor’s price for new products: 5

• Competitor’s price for refurbished products: 3

• Competitor’s rebuy price: 2

• Number of items in own storage: 10

• Number of items in competitor’s storage: 12

In each run, the Policyanalyser will then replace two of those values, as specified

by the user, with the features that should be analysed. For our first use case, we

will analyse the policy of our trained SAC-Agent. The features that should be

replaced are the SAC-Agent’s own storage, which will range from 0 to 100, and

the competitor’s price for refurbished items, ranging from 0 to 10. Results of other

feature combinations for the agent trained during the SAC-Duopoly experiment

can be found in the Appendix under Section A.4.2, as we can only analyse a limited

number of diagrams in this section. Note that it does not matter which policy the

competitor follows, as the tool does not simulate the market, but only pass market

states to the monitored agent. Figure 6.6 shows the respective new and refurbished

prices the SAC-Agent would set upon receiving these specific market states.

From Figure 6.6 (a) we can infer that the SAC-Agent is not very likely to ever

set new prices lower than 6, which coincides with the observed prices set during

(a) New prices (b) Refurbished prices

Figure 6.6: Prices set by the trained SAC-Agent, depending on the competitor’s refurbished

price and the agent’s own storage.

29

Chapter 6 Monitoring an Experiment

(a) New prices (b) Rebuy prices

Figure 6.7: Prices set by the rule-based agent, depending on the competitor’s new price

and the agent’s own storage.

training, see Figure 6.3 (d). Figure 6.6 (a) also shows that the SAC-Agent will

increase prices for new items if it has a higher number of items in its storage, but

not necessarily if the competitor’s price for refurbished items rises. By increasing

the price for new items, the agent tries to de-incentivise customers to buy those

items from it. At the same time, when looking at Figure 6.6 (b), the SAC-Agent

will also decrease the price for refurbished items if it has more in storage, again to

incentivise customers to buy those products. From both of these diagrams we can

see that the SAC-Agent prioritises making pricing decisions based on the amount

of items in its storage, and less based on competitor prices.

Next, we will analyse the policy of the RuleBasedCERebuyAgentStorageMinimizer
using the Policyanalyser. Figure 6.7 shows the results of this monitoring session, run

using the same feature combinations as before. Figure 6.7 (a) shows the prices set

by the vendor for new products, which follows the agent’s policy implementation

(see Figure A.2) of always undercutting competitor prices by 1, but always sell

above production price (which in this case is 3, see the market configuration file in

Figure A.5). Figure 6.7 (b) shows the price the rule-based agent will set for buying

back items from customers. According to its policy, the rebuy price depends on

both the agent’s own storage and either its own price for new items (if inventory is

low) or competitor’s rebuy prices, both of which can be seen in the diagram. As

soon as inventory exceeds the limit set in the policy, the agent sets a rebuy price

that is 1 lower than the lowest competitor’s rebuy price - which in this case is 2,

as defined by the template market state. If inventory is low enough, rebuy prices

are instead dependent on the vendor’s own new prices, as seen in Figure 6.7 (a),

always being one lower, indirectly following the competitor’s new price.

6.2.5 Other use cases for Agent-monitoring

Even though most of the diagrams that are created through the Agent-monitoring

tool are created if it is run immediately after a training session, it is disconnected

from the Live-monitoring tool. There are two major reasons for this, explained in

the following two sections.

30

Experiment results Section 6.2

(a)Mean profits per episode (b) Refurbished products sold per episode

(c) Profits by refurbished sales per episode

Figure 6.8: Diagrams created during an Agent-monitoring session comparing two rule-

based pricing methods.

Testing rule-based pricing methods

First, aside from training RL agents, even though this is the main focus, our market

simulation framework can just as well be used to implement and test classically

rule-based pricing methods, as we have done ourselves for our rule-based vendors.

In order to make this workflow possible, users need to be able to use the Agent-

monitoring tool, as it is the only way of running large-scale simulations of different

marketplaces aside from training an agent, which is not an option for this use

case. Figure 6.8 shows the results of an Agent-monitoring session with a Rule-
BasedCERebuyAgent playing against a RuleBasedCERebuyAgentStorageMinimizer, a
Data-driven model that tries to keep the amount of products in its storage as low as

possible. Its policy can be found in Figure A.2. As was already mentioned in Section

3.3, we can see that the RuleBasedCERebuyAgent performed significantly worse than

the other rule-based agent (Figure 6.8 (a)). This is mainly due to the fact that it is a

purely Inventory-based model, while the RuleBasedCERebuyAgentStorageMinimizer
is a Data-driven model. Certain characteristics of the RuleBasedCERebuyAgentStor-
ageMinimizer can also be seen in Figure 6.8 (b) and Figure 6.8 (c), as it sells less

refurbished products, but is still able to make about the same amount of profits as

the simpler RuleBasedCERebuyAgent. This can be attributed to its quality of keeping

storage costs low by minimising inventory size.

Testing trained models against different competitors

The second reason for having the Agent-monitoring as a stand-alone tool is to

be able to monitor trained RL agents not only against the competitors they were

31

Chapter 6 Monitoring an Experiment

(a) Mean profits per episode (b) Storage costs per episode

(c) Sales of refurbished items per episode

Figure 6.9: Diagrams created during an Agent-monitoring with the SAC-model saved after

1,000 training episodes playing against a RuleBasedCERebuyAgentStorageMinimizer.

trained against, but any combination of other agents, including other trained RL

agents. Figure 6.9 shows this use case on the example of our trained SAC-Agent

from the SAC-Duopoly experiment playing not against the RuleBasedCERebuyA-
gentCompetitive it was trained against, but instead playing against a RuleBased-
CERebuyAgentStorageMinimizer.
From Figure 6.9 (a) we can infer that the SAC-Agent we trained does not play

as well against the RuleBasedCERebuyAgentStorageMinimizer as it did against the

RuleBasedCERebuyAgentCompetitive (Figure 6.1 (a)), as it makes slightly less profits

overall and is consistently being outperformed by the rule-based agent. This can

be expected, as the trained agent no longer learns the behaviour of its competitor,

but now acts according to the previously learned policy. This means that with a

change of the competitor, the learned policy may not be as good as it was against

the previous opponent.

The impact the different rule-based agent has on the simulation can also be seen

in the difference between storage costs of both vendors between the two monitoring

runs. While in Figure 6.3 (a) both vendors paid storage costs between 50 and 150, this

was not the case for the second simulation, where storage costs were much lower

for both vendors (Figure 6.9 (b)). As the RuleBasedCERebuyAgentStorageMinimizer
focusses on keeping a low inventory at all times, it also buys back less items. This

seems to have agreed with the SAC-Agent’s policy, as the trained agent also kept

fewer items in inventory in the simulation against this competitor. It was however

not able to manage inventory as well as the rule-based agent, as both its storage

costs were higher, and sales of refurbished items lower, see Figure 6.9 (c).

32

7 Outlook & Summary

In this final chapter, we will look back at our framework and give an outlook on how
different parts of it, especially the monitoring tools, could be improved in the future.
This will be followed by a short summary of the learnings from this thesis.

7.1 Modelling a realistic recommercemarketplace

Wedo not claim in anyway that our simulation framework is exhaustive or complete.

This section will focus on ways in which different parts of it could or should be

improved in the future, to model a more realistic marketplace.

In the modern recommerce market, more and more consumers make their

initial purchasing decisions with the product’s eventual resale value already in

mind [TP19]. Additionally, a great number of different motivations for choosing

second-hand or refurbished products over traditional new ones can be identified.

An exemplary study conducted in 2008 [RG08] classified such motivations into 15

different categories (see Table A.2), all of which could be used to add dimensions

to customer behaviour in our simulation framework, thereby making the whole

simulation more realistic.

Our current limited customer behaviour results in the fact that our framework can

not be used out-of-the-box for any kind of market. However, great care was taken

during the development process to build each part of the simulation in a modular

way, so that new functionality can easily be integrated into it. Marketplaces,

customers and vendors (rule-based as well as those using Reinforcement learning)

have all been implemented as classes disconnected from each other, so that new

variants of each can easily be added to the pool of available options to be used in

experiments. The same goes for our monitoring tools, all of which have been built

to work with any (valid) combination of input parameters. For reference, all of the

classes shown in Figure 3.1 can be extended or replaced with ease. Please also refer

to [Dre22] for more information on the modularity of our framework.

The lack of realism on certain areas of the framework does not directly impact

the way that our monitoring tools work or can be used. It must however be noted

that the interpretation of results must always be based on the knowledge of these

limitations.

7.2 Improving our monitoring tools

While the previous section focussed on ways in which our simulation framework

could be extended to be more realistic, this section will instead focus on ways

in which our various monitoring tools could be improved. While all of the tools

currently at our disposal are able to do what is expected of them and they each have

their own strengths, there are still a number of ways that they could be enhanced.

33

Chapter 7 Outlook & Summary

7.2.1 Live-monitoring

The current downside of the Live-monitoring tool is that users need to wait until

the training session has concluded before diagrams are created and the Agent-

monitoring tool is run on the saved intermediate models. For example, imagine a

scenario where a training session was initialised to run for 10,000 episodes, saving

intermediate models each 1,000 episodes. In the end, when the Live-monitoring tool

is run, the user may find that the best model was the one saved after 3,000 episodes,

meaning that a lot of time was wasted training an additional 7,000 episodes. The

possibility of this happening may at first seem counterintuitive, but is a common

phenomenon when training RL agents, known as Catastrophic Forgetting (see also

[Cah11]). By improving the Live-monitoring tool with an option to run the Agent-
monitoring whenever an intermediate model is saved, the user would be

able to recognise such trends much faster and terminate the experiment at the

right time. This feature could be further enhanced with a smart built-in option that

terminates the experiment for the user if a downward trend in performance
is detected. Specific thresholds for these terminations should also optionally be

set by the user. For this, the data created during the Live-monitoring tool would

need to be saved in a machine-readable form - graphs and diagrams are not useful

here.

7.2.2 Agent-monitoring

This brings us to improvements that could be made to the Agent-monitoring tool.

At the moment, a lot of data is recorded when simulating the marketplace, but only

graphs and diagrams are created as a result of the simulation. By giving users the
option to have data saved a .csv files, users would be enabled to use the results
of the simulation in other ways more easily, even for monitoring and evaluation

tools completely disconnected from our own framework and the tools we provide.

Reproducibility is also a major concern when it comes to evaluating simulation

results, as was already mentioned in Chapter 2 and is discussed in many papers

such as [Hen+17] and [Isl+17]. In our simulation framework, with the start of a new

episode the market state is always shuffled randomly, to allow Reinforcement learn-

ing algorithms to properly explore the environment. This is however creating the

problem of creating simulations which are currently impossible to reproduce, which

could be solved by introducing a seed-based system for shuffling market
states and sharing this seed with the user. When running a different simulation

with the same seed, assuming that the marketplace type and environment stay the

same, users can recreate the same random market states that are set at the start

of an episode. This allows for even better and in-depth comparisons of different

vendors, past a single run of the Agent-monitoring tool. This seed-system could

also be applied to the training workflow.

7.2.3 Exampleprinter

The Exampleprinter is a great tool for quickly monitoring and evaluating a certain

market setup. However, only for one specific combination of marketplace type and

market environment, a Duopoly scenario of a Circular Economy with rebuy prices,

the animated overview diagram is created. Building templates and adding dia-

34

gram support for more scenarios should therefore be a priority when enhancing

the Exampleprinter. Additionally, the market-seed feature introduced in Section

7.2.2 should also be implemented for the Exampleprinter, to allow users to run a

simulation multiple times to monitor possible discrepancies in agent behaviour and

find outliers in the data. This could be further enhanced by adding a configuration

option that allows for more than one episode to be simulated at a time.
As a combined enhancement for both the Agent-monitoring and the Example-

printer, the Exampleprinter could be integrated into the Agent-monitoring,
while still being its own tool, the same as the Agent-monitoring is integrated into

the Live-monitoring.

7.2.4 Policyanalyser
The biggest and most important improvement to the Policyanalyser does not con-

cern its concrete features, but the way users interact with it. Currently, all of

the other monitoring tools are either integrated into some part of the workflow

(e.g. the Live-monitoring), or can easily be started using simple commands, see

Chapter 5. This is however not the case for the Policyanalyser, which must be

started by going into the code itself, which is less than ideal from a user-perspective.

So, integrating the Policyanalyser into the workflow, both by creating a
user-facing interface for it and by adding configuration options to start it
after a training session are features that should be a priority when continuing

work on the framework. Users are also able to use the Policyanalyser to analyse a

large number and combination of features, so curating a list of useful feature
combinations to be analysed would aid many users when using this tool.

7.3 Summary
Using the market simulation framework that was built within the scope of the bach-

elor’s project, users can simulate complex recommerce market situations. Thanks

to the modular nature of the framework, different components, such as customer

behaviour, can be updated, exchanged or added upon to create a configuration

that fits the individual use case. The goal of such simulations is to enable users to

implement, test and evaluate various dynamic pricing methods. While classically

rule-based pricing methods play a big part in the framework, the majority of im-

plemented and tested pricing methods are those based on Reinforcement learning

algorithms, a machine learning technology. The goal of using such algorithms is to

automate and optimise the dynamic pricing problem in the recommerce market

environment. By using our framework, users are provided with a large number

of tools to monitor, compare and evaluate any combination of pricing methods,

enabling them to find the right fit for their needs. The provided tools work on many

different levels, from those simulating large amounts of episodes, allowing for an

analysis of potential macro-economic implications following specific approaches,

to those that work on th smallest possible scale, testing an agent’s pricing policy

against every possible combination of market states and competitor actions. This

allows for a thorough investigation of different strengths and weaknesses of the

monitored pricing agents, a necessary prerequisite before being able to employ

them in the real market and giving them power over actual pricing decisions.

35

7Bibliography
[Aba+16] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,

Yuan Yu and Xiaoqiang Zheng. Tensorflow: large-scale machine learning
on heterogeneous distributed systems. Corr abs/1603.04467 (2016). arXiv:
1603.04467. url: http://arxiv.org/abs/1603.04467 (see page 16).

[Arc05] New York Times (Archived). As i.t. goes, so goes forrester? Accessed: 2022-

06-21. 2005. url: https : / /web . archive . org /web / 20180613040854 / https :

//www.nytimes.com/2005/02/18/business/yourmoney/as-it-goes-so-goes-

forrester.html (see page 1).

[Bas22] Stable Baselines3. Rl algorithms. Accessed: 2022-06-06. 2022. url: https://
stable-baselines3.readthedocs.io/en/master/guide/algos.html (see page 14).

[Bes22] Nick Bessin. The marketplace of the future: simulation of market pro-
cesses in re-commerce. Hasso-Plattner-Institute, 2022 (see pages 7, 8).

[Bro+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang and Wojciech Zaremba. Openai gym (2016). doi: 10.

48550/ARXIV.1606.01540. url: https://arxiv.org/abs/1606.01540 (see page 6).

[Cah11] Andy Cahill. Catastrophic forgetting in reinforcement-learning envir-
onments. MA thesis. University of Otago, 2011. url: http://hdl.handle.net/

10523/1765 (see page 34).

[CLH18] Jui-Hung Chang, Yin Chung Leung and Ren-Hung Hwang. A survey and
implementation on neural network visualization. In: 2018 15th inter-
national symposium on pervasive systems, algorithms and networks (i-span).
2018, 107–112. doi: 10.1109/I-SPAN.2018.00026 (see page 6).

[den15] Arnoud V. den Boer. Dynamic pricing and learning: historical origins,
current research, and new directions. Surveys in operations research and
management science 20:1 (2015), 1–18. issn: 1876-7354. doi: https://doi.org/
10.1016/j.sorms.2015.03.001. url: https://www.sciencedirect.com/science/

article/pii/S1876735415000021 (see page 5).

[Dre22] Leonard Dreeßen. Pricing in the re-commerce domain: analysis of
pricing strategies with an online market simulation. Hasso-Plattner-
Institute, 2022 (see pages 7, 33).

[EIT13] Jacqueline K Eastman, Rajesh Iyer and Stephanie P Thomas. The impact of
status consumption on shopping styles: an exploratory look at the
millennial generation. Marketing management journal 23:1 (2013), 57–73
(see pages 8, 43).

37

https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://web.archive.org/web/20180613040854/https://www.nytimes.com/2005/02/18/business/yourmoney/as-it-goes-so-goes-forrester.html
https://web.archive.org/web/20180613040854/https://www.nytimes.com/2005/02/18/business/yourmoney/as-it-goes-so-goes-forrester.html
https://web.archive.org/web/20180613040854/https://www.nytimes.com/2005/02/18/business/yourmoney/as-it-goes-so-goes-forrester.html
https://stable-baselines3.readthedocs.io/en/master/guide/algos.html
https://stable-baselines3.readthedocs.io/en/master/guide/algos.html
https://doi.org/10.48550/ARXIV.1606.01540
https://doi.org/10.48550/ARXIV.1606.01540
https://arxiv.org/abs/1606.01540
http://hdl.handle.net/10523/1765
http://hdl.handle.net/10523/1765
https://doi.org/10.1109/I-SPAN.2018.00026
https://doi.org/https://doi.org/10.1016/j.sorms.2015.03.001
https://doi.org/https://doi.org/10.1016/j.sorms.2015.03.001
https://www.sciencedirect.com/science/article/pii/S1876735415000021
https://www.sciencedirect.com/science/article/pii/S1876735415000021

[FHM18] Scott Fujimoto, Herke van Hoof and David Meger. Addressing function
approximation error in actor-critic methods. In: Proceedings of the 35th
international conference on machine learning. Ed. by Jennifer Dy and Andreas

Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, Oct. 2018,

1587–1596. url: https://proceedings.mlr.press/v80/fujimoto18a.html (see

page 14).

[GB22] Torsten J. Gerpott and Jan Berends. Competitive pricing on online mar-
kets: a literature review. Journal of revenue and pricing management (June
2022). issn: 1477-657X. doi: 10.1057/s41272-022-00390-x. url: https://doi.org/

10.1057/s41272-022-00390-x (see page 5).

[Gee+19] Ruben van de Geer, Arnoud V. den Boer, Christopher Bayliss, Christine

S. M. Currie, Andria Ellina, Malte Esders, Alwin Haensel, Xiao Lei, Kyle D. S.

Maclean, Antonio Martinez-Sykora, Asbjørn Nilsen Riseth, Fredrik Ødegaard

and Simos Zachariades. Dynamic pricing and learning with competition:
insights from the dynamic pricing challenge at the 2017 informs rm &
pricing conference. Journal of revenue and pricing management 18:3 (June
2019), 185–203. issn: 1477-657X. doi: 10 .1057/s41272- 018- 00164- 4. url:

https://doi.org/10.1057/s41272-018-00164-4 (see page 5).

[Gro22] Jan Niklas Groeneveld. A comparison of reinforcement learning al-
gorithms for dynamic pricing in recommerce markets. Hasso-Plattner-
Institute, 2022 (see pages 3, 13).

[GWZ99] Chris Gaskett, David Wettergreen and Alexander Zelinsky. Q-learning in
continuous state and action spaces. In: Advanced topics in artificial intel-
ligence. Ed. by Norman Foo. Berlin, Heidelberg: Springer Berlin Heidelberg,

1999, 417–428. isbn: 978-3-540-46695-6 (see page 13).

[Haa+18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel and Sergey Levine. Soft actor-
critic: off-policy maximum entropy deep reinforcement learning with
a stochastic actor. Corr abs/1801.01290 (2018). arXiv: 1801.01290. url: http:
//arxiv.org/abs/1801.01290 (see pages 14, 23).

[Hen+17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup

and David Meger. Deep reinforcement learning that matters. 2017. doi: 10.
48550/ARXIV.1709.06560. url: https://arxiv.org/abs/1709.06560 (see pages 6,

34).

[Her22] Judith Herrmann. Scalable learning in the cloud. Hasso-Plattner-Institute,
2022 (see page 21).

[Hun07] J. D. Hunter.Matplotlib: a 2d graphics environment. Computing in science
& engineering 9:3 (2007), 90–95. doi: 10.1109/MCSE.2007.55 (see page 16).

[Ins20] Wuppertal Institut. Reuse und secondhand in deutschland. Accessed: 2022-
06-21. 2020. url: https://de.statista.com/statistik/daten/studie/1248873/

umfrage/bevorzugter-kanal-fuer-den-verkauf-von-secondhand-produkten-

in-deutschland/ (see page 1).

[Isl+17] Riashat Islam, Peter Henderson, Maziar Gomrokchi and Doina Precup. Re-
producibility of benchmarked deep reinforcement learning tasks for
continuous control. Corr abs/1708.04133 (2017). arXiv: 1708.04133. url:

http://arxiv.org/abs/1708.04133 (see page 34).

38

https://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1057/s41272-022-00390-x
https://doi.org/10.1057/s41272-022-00390-x
https://doi.org/10.1057/s41272-022-00390-x
https://doi.org/10.1057/s41272-018-00164-4
https://doi.org/10.1057/s41272-018-00164-4
https://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.48550/ARXIV.1709.06560
https://doi.org/10.48550/ARXIV.1709.06560
https://arxiv.org/abs/1709.06560
https://doi.org/10.1109/MCSE.2007.55
https://de.statista.com/statistik/daten/studie/1248873/umfrage/bevorzugter-kanal-fuer-den-verkauf-von-secondhand-produkten-in-deutschland/
https://de.statista.com/statistik/daten/studie/1248873/umfrage/bevorzugter-kanal-fuer-den-verkauf-von-secondhand-produkten-in-deutschland/
https://de.statista.com/statistik/daten/studie/1248873/umfrage/bevorzugter-kanal-fuer-den-verkauf-von-secondhand-produkten-in-deutschland/
https://arxiv.org/abs/1708.04133
http://arxiv.org/abs/1708.04133

[Jor+20] Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang and Philip

Thomas. Evaluating the performance of reinforcement learning al-
gorithms. In: Proceedings of the 37th international conference onmachine learn-
ing. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine

Learning Research. PMLR, July 2020, 4962–4973. url: https://proceedings.mlr.

press/v119/jordan20a.html (see page 6).

[KHG00] Jeffrey O. Kephart, James E. Hanson and Amy R. Greenwald. Dynamic pri-
cing by software agents. Computer networks 32:6 (2000), 731–752. issn:

1389-1286. doi: https : / / doi . org / 10 . 1016 / S1389 - 1286(00) 00026 - 8. url:

https://www.sciencedirect.com/science/article/pii/S1389128600000268 (see

page 5).

[KLM96] Leslie Pack Kaelbling, Michael L. Littman and Andrew W. Moore. Reinforce-
ment learning: a survey. Journal of artificial intelligence research 4 (1996),

237–285. doi: https://doi.org/10.1613/jair.301. url: https://www.jair.org/

index.php/jair/article/view/10166 (see page 13).

[KPM20] KPMG.Wie äußert sich bei ihnen der fokus auf nachhaltige mode beim shop-
ping? Accessed: 2022-06-21. 2020. url: https://de.statista.com/statistik/daten/

studie/1179997/umfrage/umfrage-unter-verbrauchern-zu-nachhaltigem-

modekauf-in-deutschland/ (see page 1).

[KRH17] Julian Kirchherr, Denise Reike and Marko Hekkert. Conceptualizing the
circular economy: an analysis of 114 definitions. Resources, conservation
and recycling 127 (2017), 221–232. issn: 0921-3449. doi: https://doi.org/10.

1016/j.resconrec.2017.09.005. url: https://www.sciencedirect.com/science/

article/pii/S0921344917302835 (see page 2).

[Lil+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver and Daan Wierstra. Continuous control
with deep reinforcement learning. Arxiv preprint arxiv:1509.02971 (2015)
(see page 14).

[Mni+16] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,

Timothy P. Lillicrap, Tim Harley, David Silver and Koray Kavukcuoglu.Asyn-
chronousmethods for deep reinforcement learning. Corr abs/1602.01783
(2016). arXiv: 1602.01783. url: http://arxiv.org/abs/1602.01783 (see page 14).

[MPD02] José del R. Millán, Daniele Posenato and Eric Dedieu. Continuous-action
q-learning. Machine learning 49:2 (Nov. 2002), 247–265. issn: 1573-0565. doi:

10.1023/A:1017988514716. url: https://doi.org/10.1023/A:1017988514716 (see

page 13).

[Mye97] Roger B Myerson. Game theory: analysis of conflict. Harvard university

press, 1997, 1 (see page 12).

[Nar+05] Y. Narahari, C. V. L. Raju, K. Ravikumar and Sourabh Shah.Dynamic pricing
models for electronic business. Sadhana 30:2 (Apr. 2005), 231–256. issn:
0973-7677. doi: 10.1007/BF02706246. url: https://doi.org/10.1007/BF02706246

(see page 11).

[Ove22] Stack Overflow. Stack overflow annual developer survey. Accessed: 2022-06-23.
2022. url: https://insights.stackoverflow.com/survey (see page 5).

[PAI22] PAIR-Code.What-if tool. Accessed: 2022-06-18. 2022. url: https://pair-code.
github.io/what-if-tool/ (see page 16).

39

https://proceedings.mlr.press/v119/jordan20a.html
https://proceedings.mlr.press/v119/jordan20a.html
https://doi.org/https://doi.org/10.1016/S1389-1286(00)00026-8
https://www.sciencedirect.com/science/article/pii/S1389128600000268
https://doi.org/https://doi.org/10.1613/jair.301
https://www.jair.org/index.php/jair/article/view/10166
https://www.jair.org/index.php/jair/article/view/10166
https://de.statista.com/statistik/daten/studie/1179997/umfrage/umfrage-unter-verbrauchern-zu-nachhaltigem-modekauf-in-deutschland/
https://de.statista.com/statistik/daten/studie/1179997/umfrage/umfrage-unter-verbrauchern-zu-nachhaltigem-modekauf-in-deutschland/
https://de.statista.com/statistik/daten/studie/1179997/umfrage/umfrage-unter-verbrauchern-zu-nachhaltigem-modekauf-in-deutschland/
https://doi.org/https://doi.org/10.1016/j.resconrec.2017.09.005
https://doi.org/https://doi.org/10.1016/j.resconrec.2017.09.005
https://www.sciencedirect.com/science/article/pii/S0921344917302835
https://www.sciencedirect.com/science/article/pii/S0921344917302835
https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://doi.org/10.1023/A:1017988514716
https://doi.org/10.1023/A:1017988514716
https://doi.org/10.1007/BF02706246
https://doi.org/10.1007/BF02706246
https://insights.stackoverflow.com/survey
https://pair-code.github.io/what-if-tool/
https://pair-code.github.io/what-if-tool/

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca An-

tiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zach DeVito, Mar-

tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

Junjie Bai and Soumith Chintala. Pytorch: an imperative style, high-
performance deep learning library. Corr abs/1912.01703 (2019). arXiv:

1912.01703. url: http://arxiv.org/abs/1912.01703 (see page 13).

[Raf+21] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian

Ernestus and Noah Dormann. Stable-baselines3: reliable reinforcement
learning implementations. Journal of machine learning research (2021) (see

page 14).

[RG08] Dominique Roux and Denis Guiot. Measuring second-hand shopping
motives, antecedents and consequences. Recherche et applications en mar-
keting (english edition) 23:4 (2008), 63–91. doi: 10.1177/205157070802300404.
eprint: https://doi.org/10.1177/205157070802300404. url: https://doi.org/10.

1177/205157070802300404 (see pages 33, 44).

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: an intro-
duction. MIT press, 2018 (see page 14).

[Sch+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford and Oleg

Klimov. Proximal policy optimization algorithms. Corr abs/1707.06347
(2017). arXiv: 1707.06347. url: http://arxiv.org/abs/1707.06347 (see pages 14,

23).

[SK86] George B. Sprotles and Elizabeth L. Kendall. A methodology for profiling
consumers’ decision-making styles. Journal of consumer affairs 20:2 (1986),
267–279. doi: https://doi.org/10.1111/j.1745-6606.1986.tb00382.x. eprint: https:

//onlinelibrary.wiley.com/doi/pdf/10.1111/j.1745-6606.1986.tb00382.x. url:

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-6606.1986.tb00382.x

(see page 43).

[Ten20] TensorFlow. Developing a tensorboard plugin. Accessed: 2022-06-18. 2020. url:
https : / /github.com/tensorflow/tensorboard/blob/master/ADDING_A_

PLUGIN.md (see page 16).

[TP19] Linda Lisa Maria Turunen and Essi Pöyry. Shopping with the resale value
inmind: a study on second-hand luxury consumers. International journal
of consumer studies 43:6 (2019), 549–556. doi: https://doi.org/10.1111/ijcs.
12539. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/ijcs.12539. url:

https://onlinelibrary.wiley.com/doi/abs/10.1111/ijcs.12539 (see page 33).

[Wex+20] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg,

Fernanda Viégas and Jimbo Wilson. The what-if tool: interactive prob-
ing of machine learning models. Ieee transactions on visualization and
computer graphics 26:1 (2020), 56–65. doi: 10.1109/TVCG.2019.2934619 (see
page 16).

[Won+18] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dan-

delion Mané, Doug Fritz, Dilip Krishnan, Fernanda B. Viégas and Martin

Wattenberg. Visualizing dataflow graphs of deep learning models in
tensorflow. Ieee transactions on visualization and computer graphics 24:1
(2018), 1–12. doi: 10.1109/TVCG.2017.2744878 (see page 6).

40

https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1177/205157070802300404
https://doi.org/10.1177/205157070802300404
https://doi.org/10.1177/205157070802300404
https://doi.org/10.1177/205157070802300404
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/https://doi.org/10.1111/j.1745-6606.1986.tb00382.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1745-6606.1986.tb00382.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1745-6606.1986.tb00382.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-6606.1986.tb00382.x
https://github.com/tensorflow/tensorboard/blob/master/ADDING_A_PLUGIN.md
https://github.com/tensorflow/tensorboard/blob/master/ADDING_A_PLUGIN.md
https://doi.org/https://doi.org/10.1111/ijcs.12539
https://doi.org/https://doi.org/10.1111/ijcs.12539
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ijcs.12539
https://onlinelibrary.wiley.com/doi/abs/10.1111/ijcs.12539
https://doi.org/10.1109/TVCG.2019.2934619
https://doi.org/10.1109/TVCG.2017.2744878

7List of Figures
1.1 The product lifecycle in a Circular Economy with rebuy prices. In a

Linear Economy the product lifecycle ends with step 2. Step 6 may

also reconnect with Step 3 to start a new cycle. 2

1.2 The standard Reinforcement learning model in the context of our

market simulation. 3

3.1 Interactions between classes concerning the market simulation. . 8

4.1 The internal workflow when running an Agent-monitoring session.

Table A.3 lists the different types of diagrams created by both the

Live- and Agent-monitoring and which of the recorded metrics they

visualise. 18

5.1 Diagram depicting possible workflows, without webserver interac-

tion. 22

6.1 Profit per episode of four different training runs of an SAC-Agent

on a Duopoly market. 24

6.2 Probability densities for achieving a certain profit for four different

training stages of the model trained during the SAC-Duopoly_1
experiment. 25

6.3 Diagrams visualising various data points collected during training

of the SAC-Duopoly_1 experiment. 27

6.4 Violinplots showing a selection of collected data when running the

Agent-monitoring after a training session. 28

6.5 Actions and market states during step 17 of the Exampleprinter

session. 29

6.6 Prices set by the trained SAC-Agent, depending on the competitor’s

refurbished price and the agent’s own storage. 29

6.7 Prices set by the rule-based agent, depending on the competitor’s

new price and the agent’s own storage. 30

6.8 Diagrams created during an Agent-monitoring session comparing

two rule-based pricing methods. 31

6.9 Diagrams created during an Agent-monitoring with the SAC-model

saved after 1,000 training episodes playing against a RuleBased-
CERebuyAgentStorageMinimizer. 32

A.1 Policy implementation of the RuleBasedCERebuyAgent, simplified

for readability. 46

A.2 Policy implementation of the RuleBasedCERebuyAgentStorageMin-
imizer, simplified for readability. 47

A.3 Policy implementation of the RuleBasedCERebuyAgentCompetitive,
simplified for readability. 47

A.4 The environment_config.json of the SAC-Duopoly experi-

ment, simplified for readability. 48

41

A.5 The market_config.json of the SAC-Duopoly experiment. . . 48

A.6 The configuration file for the SAC-Agent of the SAC-Duopoly ex-

periment. 48

A.7 Prices set by the trained SAC-Agent, depending on the competitor’s

new price and the agent’s own storage. 49

A.8 Prices set by the trained SAC-Agent, depending on both the com-

petitor’s and the agent’s storage. 49

A.9 The environment_config.json of the PPO-Oligopoly experi-

ment, simplified for readability. 50

A.10 The configuration file for the PPO-Agent of the PPO-Oligopoly

experiment. 50

A.11 The PPO-Agent took significantly longer than the SAC-Agent (Fig-

ure 6.1) to reach its maximum possible profit (Figure A.11 (a)) and

the model that was trained longest outperforms the other two (Fig-

ure A.11 (b)), as was to be expected following the steady increase

in profits during training. 51

A.12 While rebuy prices were consistently at or below 1 (excluding

the FixedPriceAgent), prices for refurbished products rose consist-

ently, with the RuleBasedCERebuyAgentStorageMinimizer leading
the price run. 51

A.13 Except in the case of the FixedPriceAgent, a higher number of sales

of refurbished products was always followed by a similar decrease

in storage costs, meaning that the number of bought back products

likely stayed on a steady level over the course of training. This is

confirmed by Figure A.14 (a). 52

A.14 The number of products bought back by vendors (except for the

FixedPriceAgent) stayed similar over the whole course of train-

ing. With an increase in rebuy-prices (Figure A.12 (a)), the Fixed-
PriceAgent lost some of its rebuys to the other vendors. Following

an overall increase in prices (see e.g. Figure A.12 (b)), more and

more customers chose to buy none of the advertised products. . . 52

42

A Appendix

A.1 Tables

Consumer Characteristic Description

Perfectionistic, High-Quality

Conscious

Consumer searches carefully and systematically

for the very best quality in products

Brand Conscious, ‘Price =

Quality’

Consumer is oriented towards buying the more ex-

pensive, well-known brands

Novelty and Fashion Con-

scious

Consumers who like new and innovative products and

gain excitement from seeking out new things

Recreational and Shopping

Conscious

Consumer finds shopping a pleasant activity and en-

joys shopping just for the fun of it

Price Conscious/ Value for

the Money

Consumer with a particularly high consciousness of

sale prices and lower prices in general

Impulsive/ Careless Consumer who buys on the spur of the moment and

appears unconcerned about how much he/she spends

Confused by Overchoice Consumer perceiving toomany brands and stores from

which to choose and experiences information overload

in the market

Habitual/ Brand Loyal Consumer who repetitively chooses the same favorite

brands and stores

Table A.1: Consumer Shopping Styles, from [EIT13], including information from [SK86].

43

I - Economic dimensions

1. ECO1 - Buying cheaper, spending less (anxiety expressed in regard to expenditure)

2. ECO2 - Paying fair prices

3. ECO3 - Allocative role of price (what is obtained for a particular budget)

4. ECO4 - Bargain hunting

II - Dimensions relating to the nature of the offering

5. OFF1 - Originality

6. OFF2 - Nostalgia

7. OFF3 - Congruence

8. OFF4 - Self-expression

III - Dimensions relating to the recreational aspects of second-hand channels

9. CIR1 - Social contact

10. CIR2 - Stimulation

11. CIR3 - Treasure hunting

IV - Power dimensions

12. PUIS1 - Smart shopping

13. PUIS2 - Power over the seller

V - 14. ETH - Ethical and ecological dimension

VI - 15 ANT-OST - Anti-ostentation dimension

Table A.2: 15 areas of motivation toward second-hand shopping, from [RG08] (descriptions

omitted).

s
t
a
t
e
/
i
n
_
c
i
r
c
u
l
a
t
i
o
n

s
t
a
t
e
/
i
n
_
s
t
o
r
a
g
e

a
c
t
i
o
n
/
p
r
i
c
e
_
n
e
w

a
c
t
i
o
n
/
p
r
i
c
e
_
r
e
f
u
r
b
i
s
h
e
d

a
c
t
i
o
n
/
r
e
b
u
y
_
p
r
i
c
e

o
w
n
e
r
/
t
h
r
o
w
_
a
w
a
y

o
w
n
e
r
/
r
e
b
u
y
s

c
u
s
t
o
m
e
r
/
p
u
r
c
h
a
s
e
_
n
e
w

c
u
s
t
o
m
e
r
/
p
u
r
c
h
a
s
e
_
r
e
f
u
r
b
i
s
h
e
d

c
u
s
t
o
m
e
r
/
b
u
y
_
n
o
t
h
i
n
g

p
r
o
fi
t
/
r
e
b
u
y
_
c
o
s
t

p
r
o
fi
t
/
s
t
o
r
a
g
e
_
c
o
s
t

p
r
o
fi
t
/
b
y
_
n
e
w

p
r
o
fi
t
/
b
y
_
r
e
f
u
r
b
i
s
h
e
d

p
r
o
fi
t
/
a
l
l

p
r
o
fi
t
/
r
e
w
a
r
d

Exampleprinter X X X X X X X X X

TensorBoard X X X X X X X X X X X X X X X X

L
i
v
e

Scatter X X X X X X X X X X X X X X X

Line X X X X X X X X X X X X X X X

A
g
e
n
t Density X X X X X X X X X X X X X X X X

Violin X X X X X X X X X X X X X X X X

Line X X X X X X X X X X X X X X X X

Table A.3: All metrics recorded during the simulation and which monitoring tools visualise

them.

44

A.2 Exemplary calculation of customer purchase
probabilities

In this section we will calculate the probability distribution for an exemplary market

scenario
1
. We assume a Circular Economy, Duopoly market scenario with prices

set by the two vendors as shown in Table A.4.

𝑃𝑛𝑒𝑤 𝑃𝑟𝑒 𝑓
Vendor 0 7 4

Vendor 1 6 2

Table A.4: Prices set by the vendors in our exemplary market scenario.

This will result in the following preference ratios for new products, following the

definition in Equation (3.1):

𝑟0,𝑛𝑒𝑤 := 𝑟𝑛𝑒𝑤 (𝑃0,𝑛𝑒𝑤) =
10

7

− 𝑒7−8 ≈ 1.06 (A.10)

𝑟1,𝑛𝑒𝑤 := 𝑟𝑛𝑒𝑤 (𝑃1,𝑛𝑒𝑤) =
10

6

− 𝑒6−8 ≈ 1.53 (A.11)

We can immediately see that customers prefer the new product offered by vendor

1 over the one offered by vendor 0, signified by the higher preference ration, which

is due to the lower price of the product offered by vendor 1. The same calculation

can now be done for the refurbished products following Equation (3.2):

𝑟0,𝑟𝑒 𝑓 := 𝑟𝑟𝑒 𝑓 (𝑃0,𝑟𝑒 𝑓) =
5.5

4

− 𝑒4−5 ≈ 1.01 (A.12)

𝑟1,𝑟𝑒 𝑓 := 𝑟𝑟𝑒 𝑓 (𝑃1,𝑟𝑒 𝑓) =
5.5

2

− 𝑒2−5 ≈ 2.70 (A.13)

It seems that a price of 2 for a refurbished item is a great deal. In order to draw

samples from the multinomial distribution, we must now normalise our preference

ratios using softmax. For this, we first calculate the sum over all preference ratios

as defined in Equation (3.4) (including the ‘nothingpreference’ of Equation (3.3)):

𝑆 = 𝑒1 + 𝑒1.06 + 𝑒1.53 + 𝑒1.01 + 𝑒2.70 ≈ 27.85 (A.14)

Using this sum, we can now calculate the purchase probabilities for each product

using Equation (3.5), the results of which can be seen in Table A.5.

𝜋𝑛𝑒𝑤 𝜋𝑟𝑒 𝑓 𝜋𝑛𝑜𝑡
Vendor 0 0.10 0.10

0.10

Vendor 1 0.17 0.53

Table A.5: Purchase probabilites created by applying the softmax function on the different

preference ratios.

These probabilites sum to 1, as required, and can subsequently be used to draw

samples from the multinomial distribution, which will be omitted here.

1 Refer to Section 3.2 for the explanation of customer behaviour in our framework.

45

A.3 Rule-based agents - Policies

Figure A.1: Policy implementation of the RuleBasedCERebuyAgent, simplified for readabil-

ity.

46

Figure A.2: Policy implementation of the RuleBasedCERebuyAgentStorageMinimizer, sim-

plified for readability.

Figure A.3: Policy implementation of the RuleBasedCERebuyAgentCompetitive, simplified

for readability.

47

A.4 SAC-Duopoly experiment

A.4.1 Configuration files

FigureA.4:The environment_config.json of the SAC-Duopoly experiment, simplified

for readability.

Figure A.5: The market_config.json of the SAC-Duopoly experiment.

Figure A.6: The configuration file for the SAC-Agent of the SAC-Duopoly experiment.

48

A.4.2 Additional diagrams - Policyanalyser
Figure A.7 and Figure A.8 show additional results of a Policyanalyser session run

on the trained SAC-Agent. In Figure A.7 (a) we can see that the lower the agent’s

storage and the higher the competitor’s new price, the higher the agent will set

the price for its refurbished products. This is the result of both the agent seeing

that it can increase prices and still be cheaper than its opponent, and the agent

lowering prices to sell more refurbished products if storage is full to reduce storage

costs. Figure A.7 (b) shows that rebuy prices are low if storage is low and that the

competitor’s new prices slightly, but inconsistently, influence rebuy prices.

(a) Refurbished prices (b) Rebuy prices

Figure A.7: Prices set by the trained SAC-Agent, depending on the competitor’s new price

and the agent’s own storage.

Figure A.8 (a) shows that new prices rise the more items are in the agent’s

storage, this is to incentivise customers to rather buy refurbished products, which

will decrease inventory and thereby storage costs. Competitor’s storage seems to

have close to no effect on the agent’s new price. Figure A.8 (b) shows that rebuy

prices are only high of inventory is very low, which is the result in the agent trying

to always have at least some products in storage, as otherwise it would not be able

to sell refurbished products. In anticipation of low rebuy prices by its competitor,

the agent also sets low rebuy prices if competitor storage is low.

(a) New prices (b) Rebuy prices

Figure A.8: Prices set by the trained SAC-Agent, depending on both the competitor’s and

the agent’s storage.

49

A.5 PPO-Oligopoly experiment

A.5.1 Configuration files
The market_config.json for this experiment is the same as the one for the

SAC-Duopoly experiment and can be found in Figure A.5.

Figure A.9: The environment_config.json of the PPO-Oligopoly experiment, simpli-

fied for readability.

Figure A.10: The configuration file for the PPO-Agent of the PPO-Oligopoly experiment.

50

A.5.2 Diagrams
Some of the more interesting diagrams created during the training and subsequent

Live-monitoring of the PPO-Oligopoly experiment are shown here, without in-

depth interpretation. The agent was trained for a total of 5,000 episodes. Following

the standard Oligopoly setup, all vendors played at the same time, setting prices

after one another within each step.

(a) Profits per episode achieved during the train-
ing run

(b) Cumulative rewards per training stage per

interval, recorded during the Agent-monitoring

session

Figure A.11: The PPO-Agent took significantly longer than the SAC-Agent (Figure 6.1) to

reach its maximum possible profit (Figure A.11 (a)) and the model that was trained longest

outperforms the other two (Figure A.11 (b)), as was to be expected following the steady

increase in profits during training.

(a) Rebuy prices (b) Prices for refurbished products

Figure A.12: While rebuy prices were consistently at or below 1 (excluding the Fixed-
PriceAgent), prices for refurbished products rose consistently, with the RuleBasedCERebuyA-
gentStorageMinimizer leading the price run.

51

(a)Number of purchases of refurbished products (b) Storage costs per episode

Figure A.13: Except in the case of the FixedPriceAgent, a higher number of sales of re-

furbished products was always followed by a similar decrease in storage costs, meaning

that the number of bought back products likely stayed on a steady level over the course of

training. This is confirmed by Figure A.14 (a).

(a) Number of products bought back by each

vendor

(b)Number of customers that bought no product

Figure A.14: The number of products bought back by vendors (except for the Fixed-
PriceAgent) stayed similar over the whole course of training. With an increase in rebuy-

prices (Figure A.12 (a)), the FixedPriceAgent lost some of its rebuys to the other vendors.

Following an overall increase in prices (see e.g. Figure A.12 (b)), more and more customers

chose to buy none of the advertised products.

52

ADeclaration of Authorship

I hereby declare that this thesis is my own unaided work. All direct or indirect

sources used are acknowledged as references.

Potsdam, 4th July 2022

Nikkel Mollenhauer

53

	Abstract
	Contents
	1 Introduction
	1.1 Motivation
	1.2 The Circular Economy model
	1.3 Reinforcement learning

	2 Related Work
	2.1 Dynamic Pricing
	2.2 Visualisation - State-of-the-art
	2.3 Visualisation - Novel approaches

	3 Simulating the Marketplace
	3.1 Market scenarios
	3.2 Customers
	3.3 Vendors

	4 Approaches to Monitoring Agents
	4.1 Monitoring use cases
	4.2 Monitoring during training
	4.3 Monitoring complete agents

	5 The recommerce Workflow
	5.1 Configuring the run
	5.2 The monitoring workflow

	6 Monitoring an Experiment
	6.1 Setting up the experiment
	6.2 Experiment results

	7 Outlook & Summary
	7.1 Modelling a realistic recommerce marketplace
	7.2 Improving our monitoring tools
	7.3 Summary

	Bibliography
	List of Figures
	A Appendix
	A.1 Tables
	A.2 Exemplary calculation of customer purchase probabilities
	A.3 Rule-based agents - Policies
	A.4 SAC-Duopoly experiment
	A.5 PPO-Oligopoly experiment

	Declaration of Authorship

