
Original	text	from	MPI-3.1



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 25

3.2.2 Message Data

The send bu↵er specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 3.1.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE
MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is di↵erent from a character. Di↵erent machines may have di↵erent
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. AdditionalMPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared
to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, and MPI_REAL8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1,
MPI_INTEGER2, and MPI_INTEGER4 for Fortran integers, declared to be of type
INTEGER*1, INTEGER*2, and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication bu↵er; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_O↵set, and MPI_Count and their Fortran equivalents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



26 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype
MPI_CHAR char

(treated as printable character)
MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT signed long long int

MPI_LONG_LONG (as a synonym) signed long long int

MPI_SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)

MPI_C_BOOL _Bool

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

MPI_C_COMPLEX float _Complex

MPI_C_FLOAT_COMPLEX (as a synonym) float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_BYTE
MPI_PACKED

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND), and INTEGER

(KIND=MPI_COUNT_KIND). This is described in Table 3.3. All predefined datatype handles
are available in all language bindings. See Sections 17.2.6 and 17.2.10 on page 658 and 666
for information on interlanguage communication with these types.

If there is an accompanying C++ compiler then the datatypes in Table 3.4 are also
supported in C and Fortran.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

MPI datatype C datatype Fortran datatype
MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)

MPI_OFFSET MPI_Offset INTEGER (KIND=MPI_OFFSET_KIND)

MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPI datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std::complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

Table 3.4: Predefined MPI datatypes corresponding to C++ datatypes

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination

tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.
The integer-valued message tag is specified by the tag argument. This integer can be

used by the program to distinguish di↵erent types of messages. The range of valid tag
values is 0, . . . ,UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in di↵erent contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, . . . , n�1[{MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



674 ANNEX A. LANGUAGE BINDINGS SUMMARY

Named Predefined Datatypes Fortran types
C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_AINT INTEGER (KIND=MPI_ADDRESS_KIND)

MPI_COUNT INTEGER (KIND=MPI_COUNT_KIND)

MPI_OFFSET INTEGER (KIND=MPI_OFFSET_KIND)

MPI_BYTE (any Fortran type)
MPI_PACKED (any Fortran type)

Named Predefined Datatypes1 C++ types
C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX std::complex<float>

MPI_CXX_DOUBLE_COMPLEX std::complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>
1 If an accompanying C++ compiler is missing, then the
MPI datatypes in this table are not defined.

Optional datatypes (Fortran) Fortran types
C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_INTEGER1 INTEGER*1

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_INTEGER8 INTEGER*8

MPI_INTEGER16 INTEGER*16

MPI_REAL2 REAL*2

MPI_REAL4 REAL*4

MPI_REAL8 REAL*8

MPI_REAL16 REAL*16

MPI_COMPLEX4 COMPLEX*4

MPI_COMPLEX8 COMPLEX*8

MPI_COMPLEX16 COMPLEX*16

MPI_COMPLEX32 COMPLEX*32

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



New	/	proposed	text

Tables	and	text	have	been	moved
around.

The	modified	text	has
been	colored	red,	but	the	text

movement	has	not	been	specifically	
annotated	– compare	it	to	the	
original	3.1	text	to	see	the	

movement.



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 25

3.2.2 Message Data

The send bu↵er specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to
the basic datatypes of the host language. Possible values of this argument for C and the ticketJMS.
corresponding C types are listed in Table 3.1. ticketJMS.

If there is an accompanying Fortran compiler, then the datatypes in Table 3.2 are also
supported. ticketJMS.

Similarly, if there is an accompanying C++ compiler, then the datatypes in Table 3.3
are also supported.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is di↵erent from a character. Di↵erent machines may have di↵erent
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of ISO C
and, if an accompanying compiler is available, Fortran. Additional MPI datatypes should
be provided if the host language has additional data types: MPI_DOUBLE_COMPLEX for
double precision complex in Fortran declared to be of type DOUBLE COMPLEX; MPI_REAL2,
MPI_REAL4, and MPI_REAL8 for Fortran reals, declared to be of type REAL*2, REAL*4 and
REAL*8, respectively; MPI_INTEGER1, MPI_INTEGER2, and MPI_INTEGER4 for Fortran
integers, declared to be of type INTEGER*1, INTEGER*2, and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication bu↵er; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_O↵set, and MPI_Count and their Fortran equivalents
INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND), and
INTEGER (KIND=MPI_COUNT_KIND). This is described in Table 3.4. All supported prede- ticketJMS.
fined datatype handles are available in all supported language bindings. See Sections 17.2.6 ticketJMS.
and 17.2.10 on page 658 and 666 for information on interlanguage communication with
these types.

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



26 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype
MPI_CHAR char

(treated as printable character)
MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT signed long long int

MPI_LONG_LONG (as a synonym) signed long long int

MPI_SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)

MPI_C_BOOL _Bool

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

MPI_C_COMPLEX float _Complex

MPI_C_FLOAT_COMPLEX (as a synonym) float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_BYTE
MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to C datatypes

source
destination

tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only



3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

MPI datatype Fortran datatype
MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE
MPI_PACKED

Table 3.2: Predefined MPI datatypes corresponding to Fortran datatypes

MPI datatype C++ datatype
MPI_CXX_BOOL bool
MPI_CXX_FLOAT_COMPLEX std::complex<float>
MPI_CXX_DOUBLE_COMPLEX std::complex<double>
MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

Table 3.3: Predefined MPI datatypes corresponding to C++ datatypes

The message destination is specified by the dest argument.
The integer-valued message tag is specified by the tag argument. This integer can be

used by the program to distinguish di↵erent types of messages. The range of valid tag
values is 0, . . . ,UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in di↵erent contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within
this group. Thus, the range of valid values for dest is 0, . . . , n�1[{MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as o↵ered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



28 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype Fortran datatype
MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)

MPI_OFFSET MPI_Offset INTEGER (KIND=MPI_OFFSET_KIND)

MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.4: Predefined MPI datatypes corresponding to both C and Fortran datatypes

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

OUT buf initial address of receive bu↵er (choice)

IN count number of elements in receive bu↵er (non-negative in-

teger)

IN datatype datatype of each receive bu↵er element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only



674 ANNEX A. LANGUAGE BINDINGS SUMMARY

Named Predefined Datatypes [ticketJMS.]1 Fortran types
C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_AINT INTEGER (KIND=MPI_ADDRESS_KIND)

MPI_COUNT INTEGER (KIND=MPI_COUNT_KIND)

MPI_OFFSET INTEGER (KIND=MPI_OFFSET_KIND)

MPI_BYTE (any Fortran type)
MPI_PACKED (any Fortran type)
[ticketJMS.]1 If an accompanying Fortran compiler is missing, then the
[ticketJMS.] MPI datatypes in this table are not defined.

Named Predefined Datatypes1 C++ types
C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX std::complex<float>

MPI_CXX_DOUBLE_COMPLEX std::complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>
1 If an accompanying C++ compiler is missing, then the
MPI datatypes in this table are not defined.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Uno�cial Draft for Comment Only



A.1. DEFINED VALUES AND HANDLES 675

Optional datatypes (Fortran) [ticketJMS.]1 Fortran types
C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_INTEGER1 INTEGER*1

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_INTEGER8 INTEGER*8

MPI_INTEGER16 INTEGER*16

MPI_REAL2 REAL*2

MPI_REAL4 REAL*4

MPI_REAL8 REAL*8

MPI_REAL16 REAL*16

MPI_COMPLEX4 COMPLEX*4

MPI_COMPLEX8 COMPLEX*8

MPI_COMPLEX16 COMPLEX*16

MPI_COMPLEX32 COMPLEX*32

[ticketJMS.]1 If an accompanying Fortran compiler is missing, then the
[ticketJMS.] MPI datatypes in this table are not defined.

Datatypes for reduction functions (C)
C type: MPI_Datatype

Fortran type: INTEGER or TYPE(MPI_Datatype)

MPI_FLOAT_INT

MPI_DOUBLE_INT

MPI_LONG_INT

MPI_2INT

MPI_SHORT_INT

MPI_LONG_DOUBLE_INT

Datatypes for reduction functions (Fortran)
C type: MPI_Datatype

Fortran type: INTEGER or TYPE(MPI_Datatype)

MPI_2REAL

MPI_2DOUBLE_PRECISION

MPI_2INTEGER

Reserved communicators
C type: MPI_Comm

Fortran type: INTEGER or TYPE(MPI_Comm)

MPI_COMM_WORLD

MPI_COMM_SELF

Communicator split type constants
C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_COMM_TYPE_SHARED

Uno�cial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48


