Skip to content

Latest commit

 

History

History
624 lines (474 loc) · 24.8 KB

metrics.md

File metadata and controls

624 lines (474 loc) · 24.8 KB

Contents of this document

Introduction

Torchserve metrics can be broadly classified into frontend and backend metrics. Frontend metrics include system level metrics. The host resource utilization frontend metrics are collected at regular intervals(default: every minute). Torchserve provides an API to collect custom backend metrics. Metrics defined by a custom service or handler code can be collected per request or per a batch of requests. Two metric modes are supported, i.e log and prometheus. The default mode is log. Metrics mode can be configured using the metrics_mode configuration option in config.properties or TS_METRICS_MODE environment variable. For further details on config.properties and environment variable based configuration, refer Torchserve config docs.

In log mode, Metrics are logged and can be aggregated by metric agents. Metrics are collected by default at the following locations in log mode:

  • Frontend metrics - log_directory/ts_metrics.log
  • Backend metrics - log directory/model_metrics.log

The location of log files and metric files can be configured in the log4j2.xml file

In prometheus mode, all metrics are made available in prometheus format via the metrics API endpoint.

Frontend Metrics

Metric Name Type Unit Dimensions Semantics
Requests2XX counter Count Level, Hostname Total number of requests with response in 200-300 status code range
Requests4XX counter Count Level, Hostname Total number of requests with response in 400-500 status code range
Requests5XX counter Count Level, Hostname Total number of requests with response status code above 500
ts_inference_requests_total counter Count model_name, model_version, hostname Total number of inference requests received
ts_inference_latency_microseconds counter Microseconds model_name, model_version, hostname Total inference latency in Microseconds
ts_queue_latency_microseconds counter Microseconds model_name, model_version, hostname Total queue latency in Microseconds
QueueTime gauge Milliseconds Level, Hostname Time spent by a job in request queue in Milliseconds
WorkerThreadTime gauge Milliseconds Level, Hostname Time spent in worker thread excluding backend response time in Milliseconds
WorkerLoadTime gauge Milliseconds WorkerName, Level, Hostname Time taken by worker to load model in Milliseconds
CPUUtilization gauge Percent Level, Hostname CPU utilization on host
MemoryUsed gauge Megabytes Level, Hostname Memory used on host
MemoryAvailable gauge Megabytes Level, Hostname Memory available on host
MemoryUtilization gauge Percent Level, Hostname Memory utilization on host
DiskUsage gauge Gigabytes Level, Hostname Disk used on host
DiskUtilization gauge Percent Level, Hostname Disk used on host
DiskAvailable gauge Gigabytes Level, Hostname Disk available on host
GPUMemoryUtilization gauge Percent Level, DeviceId, Hostname GPU memory utilization on host, DeviceId
GPUMemoryUsed gauge Megabytes Level, DeviceId, Hostname GPU memory used on host, DeviceId
GPUUtilization gauge Percent Level, DeviceId, Hostname GPU utilization on host, DeviceId

Backend Metrics

Metric Name Type Unit Dimensions Semantics
HandlerTime gauge ms ModelName, Level, Hostname Time spent in backend handler
PredictionTime gauge ms ModelName, Level, Hostname Backend prediction time

Formatting

TorchServe emits metrics to log files by default. The metrics are formatted in a StatsD like format.

CPUUtilization.Percent:0.0|#Level:Host|#hostname:my_machine_name,timestamp:1682098185
DiskAvailable.Gigabytes:318.0416717529297|#Level:Host|#hostname:my_machine_name,timestamp:1682098185

To enable metric logging in JSON format, set "patternlayout" as "JSONPatternLayout" in log4j2.xml (See sample log4j2-json.xml). For information, see Logging in Torchserve.

After you enable JSON log formatting, logs will look as follows:

{
  "MetricName": "DiskAvailable",
  "Value": "108.15547180175781",
  "Unit": "Gigabytes",
  "Dimensions": [
    {
      "Name": "Level",
      "Value": "Host"
    }
  ],
  "HostName": "my_machine_name"
}
{
  "MetricName": "DiskUsage",
  "Value": "124.13163757324219",
  "Unit": "Gigabytes",
  "Dimensions": [
    {
      "Name": "Level",
      "Value": "Host"
    }
  ],
  "HostName": "my_machine_name"
}

To enable metric logging in QLog format, set "patternlayout" as "QLogLayout" in log4j2.xml (See sample log4j2-qlog.xml). For information, see Logging in Torchserve.

After you enable QLogsetupModelDependencies formatting, logs will look as follows:

HostName=abc.com
StartTime=1646686978
Program=MXNetModelServer
Metrics=MemoryUsed=5790.98046875 Megabytes Level|Host
EOE
HostName=147dda19895c.ant.amazon.com
StartTime=1646686978
Program=MXNetModelServer
Metrics=MemoryUtilization=46.2 Percent Level|Host
EOE

Metric Types

TorchServe Metrics is introducing Metric Types that are in line with the Prometheus API metric types.

Metric types are an attribute of Metric objects. Users will be restricted to the existing metric types when adding metrics via Metrics API.

class MetricTypes(enum.Enum):
    COUNTER = "counter"
    GAUGE = "gauge"
    HISTOGRAM = "histogram"

Central metrics YAML file definition

TorchServe defines metrics in a yaml file, including both frontend metrics (i.e. ts_metrics) and backend metrics (i.e. model_metrics). When TorchServe is started, the metrics definition is loaded in the frontend and backend cache separately. The backend flushes the metrics cache once a load model or inference request is completed.

Dynamic updates between the frontend and backend are not currently being handled.

The metrics.yaml is formatted with Prometheus metric type terminology:

dimensions: # dimension aliases
  - &model_name "ModelName"
  - &level "Level"

ts_metrics:  # frontend metrics
  counter:  # metric type
    - name: NameOfCounterMetric  # name of metric
      unit: ms  # unit of metric
      dimensions: [*model_name, *level]  # dimension names of metric (referenced from the above dimensions dict)
  gauge:
    - name: NameOfGaugeMetric
      unit: ms
      dimensions: [*model_name, *level]
  histogram:
    - name: NameOfHistogramMetric
      unit: ms
      dimensions: [*model_name, *level]

model_metrics:  # backend metrics
  counter:  # metric type
    - name: InferenceTimeInMS  # name of metric
      unit: ms  # unit of metric
      dimensions: [*model_name, *level]  # dimension names of metric (referenced from the above dimensions dict)
    - name: NumberOfMetrics
      unit: count
      dimensions: [*model_name]
  gauge:
    - name: GaugeModelMetricNameExample
      unit: ms
      dimensions: [*model_name, *level]
  histogram:
    - name: HistogramModelMetricNameExample
      unit: ms
      dimensions: [*model_name, *level]

Default metrics are provided in the metrics.yaml file, but the user can either delete them to their liking / ignore them altogether, because these metrics will not be emitted unless they are edited.

How it works

Whenever torchserve starts, the backend worker initializes service.context.metrics with the MetricsCache object. The model_metrics (backend metrics) section within the specified yaml file will be parsed, and Metric objects will be created based on the parsed section and added that are added to the cache.

This is all done internally, so the user does not have to do anything other than specifying the desired yaml file.

Users have the ability to parse other sections of the yaml file manually, but the primary purpose of this functionality is to parse the backend metrics from the yaml file.

User Manual - starting TorchServe with a yaml file specified

  1. Create a metrics.yaml file to parse metrics from OR utilize default metrics.yaml

  2. Set metrics_config argument equal to the yaml file path in the config.properties being used:

    ...
    ...
    workflow_store=../archive/src/test/resources/workflows
    metrics_config=/<path>/<to>/<metrics>/<file>/metrics.yaml
    ...
    ...

    If a metrics_config argument is not specified, the default yaml file will be used.

  3. Run torchserve and specify the path of the config.properties after the ts-config flag: (example using Huggingface_Transformers)

    torchserve --start --model-store model_store --models my_tc=BERTSeqClassification.mar --ncs --ts-config /<path>/<to>/<config>/<file>/config.properties

Custom Metrics API

TorchServe enables the custom service code to emit metrics that are then made available based on the configured metrics_mode.

The custom service code is provided with a context of the current request with a metrics object:

# Access context metrics as follows
metrics = context.metrics

All metrics are collected within the context.

Specifying Metric Types

When adding any metric via Metrics API, users have the ability to override the metric type by specifying the positional argument metric_type=MetricTypes.[COUNTER/GAUGE/HISTOGRAM].

metric1 = metrics.add_metric("GenericMetric", unit=unit, dimension_names=["name1", "name2", ...], metric_type=MetricTypes.GAUGE)
metric.add_or_update(value, dimension_values=["value1", "value2", ...])

# Backwards compatible, combines the above two method calls
metrics.add_counter("CounterMetric", value=1, dimensions=[Dimension("name", "value"), ...])

Updating Metrics parsed from the yaml file

Given the Metrics API, users will also be able to update metrics that have been parsed from the yaml file given some criteria:

(we will use the following metric as an example)

  counter:  # metric type
    - name: InferenceTimeInMS  # name of metric
      unit: ms  # unit of metric
      dimensions: [ModelName, Level]
  1. Metric Type has to be the same

    1. The user will have to use a counter-based add_... method, or explicitly set metric_type=MetricTypes.counter within the add_... method
  2. Metric Name has to be the same

    1. If the name of the metric in the YAML file you want to update is InferenceTimeInMS, then add_metric(name="InferenceTimeInMS", ...)
  3. Dimensions should be the same (as well as the same order!)

    1. All dimensions have to match, and Metric objects that have been parsed from the yaml file also have dimension names that are parsed from the yaml file
      1. Users can create their own Dimension objects to match those in the yaml file dimensions
      2. if the Metric object has ModelName and Level dimensions only, it is optional to specify additional dimensions since these are considered default dimensions, so: add_counter('InferenceTimeInMS', value=2) or add_counter('InferenceTimeInMS', value=2, dimensions=["ModelName", "Level"])

Default dimensions

Metrics will have a couple of default dimensions if not already specified.

If the metric is a type Gauge, Histogram, Counter, by default it will have:

  • ModelName,{name_of_model}
  • Level,Model

Create dimension object(s)

Dimensions for metrics can be defined as objects

from ts.metrics.dimension import Dimension

# Dimensions are name value pairs
dim1 = Dimension(name, value)
dim2 = Dimension(some_name, some_value)
.
.
.
dimN= Dimension(name_n, value_n)

NOTE: Metric functions below accept a list of dimensions

Add generic metrics

Generic metrics are defaulted to a COUNTER metric type

One can add metrics with generic units using the following function.

Function API

    def add_metric(self, metric_name: str, unit: str, idx=None, dimension_names: list = None,
                   metric_type: MetricTypes = MetricTypes.COUNTER) -> None:
        """
        Create a new metric and add into cache.
            Add a metric which is generic with custom metrics

        Parameters
        ----------
        metric_name: str
            Name of metric
        value: int, float
            value of metric
        unit: str
            unit of metric
        idx: int
            request_id index in batch
        dimensions: list
            list of dimensions for the metric
        metric_type: MetricTypes
            Type of metric
        """

    def add_or_update(
        self,
        value: int or float,
        dimension_values: list = [],
        request_id: str = "",
    ):
        """
        Update metric value, request id and dimensions

        Parameters
        ----------
        value : int, float
            metric to be updated
        dimension_values : list
            list of dimension values
        request_id : str
            request id to be associated with the metric
        """
# Add Distance as a metric
# dimensions = [dim1, dim2, dim3, ..., dimN]
# Assuming batch size is 1 for example
metric = metrics.add_metric('DistanceInKM', unit='km', dimension_names=[...])
metric.add_or_update(distance, dimension_values=[...])

Add time-based metrics

Time-based metrics are defaulted to a GAUGE metric type

Add time-based by invoking the following method:

Function API

    def add_time(self, metric_name: str, value: int or float, idx=None, unit: str = 'ms', dimensions: list = None,
                 metric_type: MetricTypes = MetricTypes.GAUGE):
        """
        Add a time based metric like latency, default unit is 'ms'
            Default metric type is gauge

        Parameters
        ----------
        metric_name : str
            metric name
        value: int
            value of metric
        idx: int
            request_id index in batch
        unit: str
            unit of metric,  default here is ms, s is also accepted
        dimensions: list
            list of dimensions for the metric
        metric_type: MetricTypes
           type for defining different operations, defaulted to gauge metric type for Time metrics
        """

Note that the default unit in this case is 'ms'

Supported units: ['ms', 's']

To add custom time-based metrics:

# Add inference time
# dimensions = [dim1, dim2, dim3, ..., dimN]
# Assuming batch size  is 1 for example
metrics.add_time('InferenceTime', end_time-start_time, None, 'ms', dimensions)

Add size-based metrics

Size-based metrics are defaulted to a GAUGE metric type

Add size-based metrics by invoking the following method:

Function API

    def add_size(self, metric_name: str, value: int or float, idx=None, unit: str = 'MB', dimensions: list = None,
                 metric_type: MetricTypes = MetricTypes.GAUGE):
        """
        Add a size based metric
            Default metric type is gauge

        Parameters
        ----------
        metric_name : str
            metric name
        value: int, float
            value of metric
        idx: int
            request_id index in batch
        unit: str
            unit of metric, default here is 'MB', 'kB', 'GB' also supported
        dimensions: list
            list of dimensions for the metric
        metric_type: MetricTypes
           type for defining different operations, defaulted to gauge metric type for Size metrics
        """

Note that the default unit in this case is milliseconds (ms).

Supported units: ['MB', 'kB', 'GB', 'B']

To add custom size based metrics

# Add Image size as a metric
# dimensions = [dim1, dim2, dim3, ..., dimN]
# Assuming batch size 1
metrics.add_size('SizeOfImage', img_size, None, 'MB', dimensions)

Add Percentage based metrics

Percentage-based metrics are defaulted to a GAUGE metric type

Percentage based metrics can be added by invoking the following method:

Function API

    def add_percent(self, metric_name: str, value: int or float, idx=None, dimensions: list = None,
                    metric_type: MetricTypes = MetricTypes.GAUGE):
        """
        Add a percentage based metric
            Default metric type is gauge

        Parameters
        ----------
        metric_name : str
            metric name
        value: int, float
            value of metric
        idx: int
            request_id index in batch
        dimensions: list
            list of dimensions for the metric
        metric_type: MetricTypes
           type for defining different operations, defaulted to gauge metric type for Percent metrics
        """

To add custom percentage-based metrics:

# Add MemoryUtilization as a metric
# dimensions = [dim1, dim2, dim3, ..., dimN]
# Assuming batch size 1
metrics.add_percent('MemoryUtilization', utilization_percent, None, dimensions)

Add counter-based metrics

Counter-based metrics are defaulted to a COUNTER metric type

Counter based metrics can be added by invoking the following method

Function API

    def add_counter(self, metric_name: str, value: int or float, idx=None, dimensions: list = None,
                    metric_type: MetricTypes = MetricTypes.COUNTER):
        """
        Add a counter metric or increment an existing counter metric
            Default metric type is counter
        Parameters
        ----------
        metric_name : str
            metric name
        value: int or float
            value of metric
        idx: int
            request_id index in batch
        dimensions: list
            list of dimensions for the metric
        metric_type: MetricTypes
           type for defining different operations, defaulted to counter metric type for Counter metrics
        """

Getting a metric

Users can get a metric from the cache. The Metric object is returned, so the user can access the methods of the Metric: (i.e. Metric.update(value), Metric.__str__)

    def get_metric(self, metric_name: str, metric_type: MetricTypes) -> Metric:
        """
        Get a Metric from cache.
            Ask user for required requirements to form metric key to retrieve Metric.

        Parameters
        ----------
        metric_type: MetricTypes
            Type of metric: use MetricTypes enum to specify

        metric_name: str
            Name of metric

        """

i.e.

# Method 1: Getting metric of metric name string, MetricType COUNTER
metrics.get_metric("MetricName", MetricTypes.COUNTER)

# Method 2: Getting metric of metric name string, MetricType GAUGE
metrics.get_metric("GaugeMetricName", MetricTypes.GAUGE)

Logging custom metrics

Following sample code can be used to log the custom metrics created in the model's custom handler:

# In Custom Handler
from ts.service import emit_metrics

class ExampleCustomHandler(BaseHandler, ABC):
   def initialize(self, ctx):

context.metrics.add_counter(...)

This custom metrics information is logged in the model_metrics.log file configured through log4j2.xml file or made available via the metrics API endpoint based on the metrics_mode configuration.

Metrics YAML File Parsing and Metrics API Custom Handler Example

This example utilizes the feature of parsing metrics from a YAML file, adding and updating metrics and their values via Metrics API, updating metrics that have been parsed from the YAML file via Metrics API, and finally emitting all metrics that have been updated.

from ts.service import emit_metrics
from ts.metrics.metric_type_enum import MetricTypes


class CustomHandlerExample:
    def initialize(self, ctx):
        metrics = ctx.metrics  # initializing metrics to the context.metrics

        # Setting a sleep for examples' sake
        start_time = time.time()
        time.sleep(3)
        stop_time = time.time()

        # Adds a metric that has a metric type of gauge
        metrics.add_time(
            "HandlerTime", round((stop_time - start_time) * 1000, 2), None, "ms"
        )

        # Logs the value 2.5 and -1.3 to the frontend
        metrics.add_counter("HandlerSeparateCounter", 2.5)
        metrics.add_counter("HandlerSeparateCounter", -1.3)

        # Adding a standard counter metric
        metrics.add_counter("HandlerCounter", 21.3)

        # Assume that a metric that has a metric type of counter
        # and is named InferenceTimeInMS in the metrics.yaml file.
        # Instead of creating a new object with the same name and same parameters,
        # this line will update the metric that already exists from the YAML file.
        metrics.add_counter("InferenceTimeInMS", 2.78)

        # Another method of updating values -
        # using the get_metric + Metric.update method
        # In this example, we are getting an already existing
        # Metric that had been parsed from the yaml file
        histogram_example_metric = metrics.get_metric(
            "HistogramModelMetricNameExample",
            MetricTypes.histogram,
        )
        histogram_example_metric.add_or_update(4.6)

        # Same idea as the 'metrics.add_counter('InferenceTimeInMS', 2.78)' line,
        # except this time with gauge metric type object
        metrics.add_size("GaugeModelMetricNameExample", 42.5)