
Sensu Go

Star | Share your feedback

Sensu is the industry leading solution for multi-cloud monitoring at scale. The Sensu monitoring
event pipeline empowers businesses to automate their monitoring workfows and gain deep visibility
into their multi-cloud environments. Founded in 2017, Sensu offers a comprehensive monitoring
solution for enterprises, providing complete visibility across every system, every protocol, every time
— from Kubernetes to bare metal.
Get started now and feel the #monitoringlove: Learn Sensu
Go.

Sensu Go is the latest version of Sensu, designed to be more portable, easier and faster to deploy,
and (even more) friendly to containerized and ephemeral environments.

Automate your monitoring workfows : Limitless pipelines let you validate and correlate events,
mutate data formats , send alerts, manage incidents, collect and store metrics, and more.

Reduce alert fatigue : Sensu gives you full control over your alerts with fexible flters, context-rich
notifcations, reporting, event handling, and auto-remediation.

Integrate anywhere : Sensu’s open architecture makes it easy to integrate monitoring with tools
you already use like Nagios plugins, Chef, Graphite, InfuxDB, and PagerDuty.

 Listen to Sensu Inc. CEO Caleb Hailey explain the Sensu monitoring event pipeline.

Monitoring for Your Infrastructure

Monitoring is the action of observing and checking the behaviors and outputs of a
system and its components over time. - Greg Poirier, Monitorama 2016

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://github.com/sensu/sensu-go/
https://github.com/sensu/sensu-go/
https://github.com/sensu/sensu-go/
http://slack.sensu.io/
https://www.youtube.com/watch?v=jUW4rAqazwA
https://vimeo.com/173610062
https://docs.sensu.io/sensu-go/5.7/
https://docs.sensu.io/

Sensu is an agent-based monitoring tool that you install on your organization’s infrastructure.
The
Sensu agent gives you visibility into everything you care about; the Sensu server gives you fexible,
automated workfows to route metrics and alerts.

Monitor containers, instances, applications, and on-premises infrastructure

Sensu is designed to monitor everything from the server closet to the cloud.
Install the Sensu agent
on the hosts you want to monitor, integrate with the Sensu API, or take advantage of proxy entities to
monitor anything on your network.
Sensu agents automatically register and de-register themselves
with the Sensu server, so you can monitor ephemeral infrastructure without getting overloaded with
alerts.

Beter incident response with flterable, context-rich alerts

Get meaningful alerts when and where you need them.
Use event flters to reduce noise and check
hooks to add context and speed up incident response.
Sensu integrates with the tools and services
your organization already uses like PagerDuty, Slack, and more.
Check out Bonsai, the Sensu asset
index, or write your own Sensu Plugins in any language.

Collect and store metrics with built-in support for industry-standard tools

Know what’s going on everywhere in your system.
Sensu supports industry-standard metric formats
like Nagios Performance Data, Graphite Plaintext Protocol, InfuxDB Line Protocol, OpenTSDB Data
Specifcation, and StatsD metrics.
Use the Sensu agent to collect metrics alongside check results, then
use the event pipeline to route the data to a time series database like InfuxDB.

Intuitive API and dashboard interfaces

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/
https://bonsai.sensu.io/
https://docs.sensu.io/plugins/latest/reference/
https://influxdata.com/

Sensu includes a dashboard to provide a unifed view of your entities, checks, and events, as well as
a user-friendly silencing tool.
The Sensu API and the sensuctl command-line tool allow you (and
your internal customers) to create checks, register entities, manage confguration, and more.

Open core sofware backed by Sensu Inc.

Sensu Go’s core is open source software, freely available under a
permissive MIT License and publicly
available on GitHub.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://github.com/sensu/sensu-go/blob/master/LICENSE
https://github.com/sensu/sensu-go
https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Sensu Go release notes

5.0.1 release notes

5.0.0 release notes

Versioning

Sensu Go adheres to semantic versioning using MAJOR.MINOR.PATCH release numbers, starting at
5.0.0. MAJOR version changes indicate incompatible API changes; MINOR versions add backwards-
compatible functionality; PATCH versions include backwards-compatible bug fxes.

Upgrading

Read the upgrade guide for information on upgrading to the latest version of Sensu Go.

5.0.1 release notes

December 12, 2018 — Sensu Go 5.0.1 includes our top bug fxes following last week’s general
availability release.
See the upgrade guide to upgrade Sensu to version 5.0.1.

FIXED:

The Sensu backend can now successfully connect to an external etcd cluster.

The Sensu dashboard now sorts silencing entries in ascending order, correctly displays status
values, and reduces shuffing in the event list.

Sensu agents on Windows now execute command arguments correctly.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://semver.org/spec/v2.0.0.html
https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/5.7/release-notes/
https://docs.sensu.io/

Sensu agents now correctly include environment variables when executing checks.

Command arguments are no longer escaped on Windows.

Sensu backend environments now include handler and mutator execution requests.

5.0.0 release notes

December 5, 2018 — We’re excited to announce the general availability release of Sensu Go!
Sensu
Go is the fexible monitoring event pipeline, written in Go and designed for container-based and
hybrid-cloud infrastructures.
Check out the Sensu blog for more information about Sensu Go and
version 5.0.

For a complete list of changes from Beta 8-1, see the Sensu Go changelog.
Going forward, this page
will be the offcial home for the Sensu Go changelog and release notes.

To get started with Sensu Go:

Download the sandbox

Install Sensu Go

Get started monitoring server resources

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

https://blog.sensu.io/sensu-go-is-here
https://github.com/sensu/sensu-go/blob/master/CHANGELOG.md#500---2018-11-30
https://github.com/sensu/sandbox/tree/master/sensu-go/core

Made with #monitoringlove by Sensu, Inc. © 2013-2019

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Geting Started

Enterprise

Faq

Get-Started

Glossary

Learn-Sensu

Media

Prometheus-Metrics

Sample-App

Sandbox

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/getting-started/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Geting started with enterprise features

Enterprise features for Sensu Go are available in version 5.2.0 and later.
See the upgrade guide to
upgrade your Sensu installation, and visit the latest documentation to get started.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/getting-started/enterprise
https://docs.sensu.io/sensu-go/5.7/getting-started/enterprise/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Sensu frequently asked questions

Thank you for visiting the Sensu FAQ!
For a list of Sensu terms and defnitions, see the glossary.

What platforms does Sensu support?

Sensu Go is available for Linux, Windows (agent and CLI only), macOS (CLI only), and Docker.
See the
list of supported platforms and the installation guide for more information.

Is Sensu available as a hosted solution?

No, Sensu is installed on your organization’s infrastructure alongside other applications and services.
See the list of supported platforms and the installation guide for more information.

What are the hardware requirements for running a Sensu backed?

See the hardware requirements guide for minimum and recommended hardware to run a Sensu
backend.

Is there an enterprise version of Sensu Go?

Yes! Enterprise features for Sensu Go are available in version 5.2.0 and later.
See the upgrade guide to
upgrade your Sensu installation, and visit the latest documentation to get started.

How can I contact the Sensu sales team?

We’d love to chat about solving your organization’s monitoring challenges with Sensu.
Get in touch
with us using this form.

What can I monitor with Sensu?

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/getting-started/enterprise
https://sensu.io/sales/
https://docs.sensu.io/sensu-go/5.7/getting-started/faq/
https://docs.sensu.io/

Sensu supports a wide range of plugins for monitoring everything from the server closet to the cloud.
Install the Sensu agent on the hosts you want to monitor, integrate with the Sensu API, or take
advantage of proxy entities to monitor anything on your network.
Check out the 200+ plugins shared
by the Sensu community, including monitoring checks for AWS, Jenkins, Puppet, InfuxDB, and SNMP.
You can also get started writing your own Sensu Plugins in any language using the Sensu Plugins
spec.

Does Sensu include a time series database for long term storage?

No, Sensu does not store event data.
We recommend integrating Sensu with a time series database,
like InfuxDB, to store event data.
See the guide to storing metrics with InfuxDB to get started.

Can I connect Sensu Go to clients and servers from earlier versions of Sensu Core
and Sensu Enterprise?

No, Sensu Go agents and backends are not compatible with Sensu Core or Sensu Enterprise
services.

Can I upgrade my Sensu version 1.x deployment to Sensu Go?

Sensu Go is a complete redesign of the original Sensu; it uses separate packages, dependencies, and
data models to bring you powerful new features.
(See the Sensu Go release announcement for more
information.)
Due to these changes, some features of Sensu 1.x are no longer supported in Sensu Go,
such as standalone checks.
To upgrade your Sensu 1.x deployment to Sensu Go, you’ll need to
translate your Sensu 1.x confguration to the format expected by Sensu Go and install the new Sensu
Go services on your infrastructure.
The Sensu Go upgrade guide includes a detailed feature
comparison between Sensu Go and Sensu 1.x as well as tools to help you get started.

Which ports does Sensu use?

The Sensu backend uses:

2379 (HTTP/HTTPS) Sensu storage client: Required for Sensu backends using an external etcd
instance

2380 (HTTP/HTTPS) Sensu storage peer: Required for other Sensu backends in a cluster

3000 (HTTP/HTTPS) Sensu dashboard: Required for all Sensu backends using a Sensu
dashboard

https://github.com/sensu-plugins
https://github.com/sensu-plugins
https://github.com/sensu-plugins/sensu-plugins-aws
https://github.com/sensu-plugins/sensu-plugins-jenkins
https://github.com/sensu-plugins/sensu-plugins-puppet
https://github.com/sensu-plugins/sensu-plugins-influxdb
https://github.com/sensu-plugins/sensu-plugins-snmp
https://docs.sensu.io/plugins/latest/reference/
https://docs.sensu.io/plugins/latest/reference/
https://www.influxdata.com/
https://blog.sensu.io/sensu-go-is-here

8080 (HTTP/HTTPS) Sensu API: Required for all users accessing the Sensu API

8081 (WS/WSS) Agent API: Required for all Sensu agents connecting to a Sensu backend

The Sensu agent uses:

3030 (TCP/UDP) Sensu agent socket: Required for Sensu agents using the agent socket

3031 (HTTP) Sensu agent API: Required for all users accessing the agent API

8125 (UDP, TCP on Windows) StatsD listener: Required for all Sensu agents using the StatsD
listener

For more information, see the guide to securing Sensu.

Can one Sensu backend monitor multiple sites?

Yes, as long as the port requirements described above are met, a single Sensu backend can monitor
Sensu agents at multiple sites.

Is it possible to use Uchiwa with Sensu Go?

Due to Sensu Go’s implementation, it is not possible to use Uchiwa with Sensu Go. Sensu Go does
have a built-in dashboard that you can use to visually interact with your Sensu Go deployment.

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Get started with Sensu

Try the sandbox

The sandbox is the best place to get started with Sensu and try out new features.

Download the sandbox and learn Sensu Go

See more sandbox lessons

Install Sensu Go

Sensu Go is the fexible monitoring event pipeline, designed for container-based and multi-cloud
infrastructures.

Install Sensu Go

Create a monitoring workfow

Sensu lets you create automated monitoring workfows to route system metrics and alerts.
Get
started by following one of the Sensu Go guides.

Monitor server resources

Send Slack alerts

Collect StatsD metrics

Store metrics with InfuxDB

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/getting-started/get-started/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Glossary of Terms

Agent

A lightweight client that runs on the infrastructure components you want to monitor.
Agents self-
register with the backend, send keepalive messages, and execute monitoring checks.
Each agent
belongs to one or more subscriptions that determine which checks the agent runs.
An agent can run
checks on the entity it’s installed on or by connecting to a remote proxy entity.
Read more.

Asset

An asset is an executable that a check, handler, or mutator can specify as a dependency.
Assets must
be a tar archive (optionally gzipped) with scripts or executables within a bin folder.
At runtime, the
backend or agent installs required assets using the specifed URL.
Assets let you manage runtime
dependencies without using confguration management tools.
Read more.

Backend

A fexible, scalable monitoring event pipeline.
The backend processes event data using flters,
mutators, and handlers.
It maintains confguration fles, stores recent event data, and schedules
monitoring checks.
You can interact with the backend using the API, command line, and dashboard
interfaces.
Read more.

Check

A recurring check run by the agent to determine the state of a system component or collect metrics.
The backend is responsible for storing check defnitions, scheduling checks, and processing event
data.
Check defnitions specify the command to be executed, an interval for execution, one or more
subscriptions, and one or more handlers to process the resulting event data.
Read more.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/getting-started/glossary/
https://docs.sensu.io/

Check hook

A command executed by the agent in response to a check result, before creating a monitoring event.
Hooks create context-rich events by gathering related information based on the check status.
Read
more.

Check token

A placeholder used in a check defnition that the agent replaces with local information before
executing the check.
Tokens let you fne-tune check attributes (like thresholds) on a per-entity level
while re-using the check defnition.
Read more.

Entity

Infrastructure components that you want to monitor.
Each entity runs an agent that executes checks
and creates events.
Events can be tied to the entity where the agent runs or a proxy entity that the
agent checks remotely.
Read more.

Event

A representation of the state of an infrastructure component at a point in time, used by the backend
to power the monitoring event pipeline.
Event data includes the result of the check or metric (or both),
the executing agent, and a timestamp.
Read more.

Filter

Logical expressions that handlers evaluate before processing monitoring events.
Filters can instruct
handlers to allow or deny matching events based on day, time, namespace, or any attribute in the
event data.
Read more.

Handler

A component of the monitoring event pipeline that acts on events.
Handlers can send monitoring
event data to an executable (or handler plugin), a TCP socket, or a UDP socket.
Read more.

Mutator

An executable run by the backend prior to the handler to transform event data.
 Read more.

Plugin

Sensu Plugins are executables designed to work with Sensu event data, either as a check plugin,
mutator plugin, or handler plugin.
You can write your own check executables in Go, Ruby, Python, and
more, or use one of over 200 plugins shared by the Sensu Community.
Read more.

Proxy Entity

Components of your infrastructure that can’t run the agent locally (like a network switch or a
website) but still need to be monitored.
Agents create events with information about the proxy entity
in place of the local entity when running checks with a specifed proxy entity id.
Read more.

RBAC

Role-based access control (RBAC) is Sensu’s local user management system.
RBAC lets you manage
users and permissions with namespaces, users, roles, and role bindings.
Read more.

Resources

Objects within Sensu that can be used to specify access permissions in Sensu roles and cluster roles.
Resources can be specifc to a namespace (like checks and handlers) or cluster-wide (like users and
cluster roles).
Read more.

Sensuctl

Command line tool that lets you interact with the backend.
You can use sensuctl to create checks,
view events, create users, manage cluster, and more.
Read more.

Silencing

Silencing entries allow you to suppress execution of event handlers on an ad-hoc basis.
You can use
silencing to schedule maintenances without being overloaded with alerts.
Read more.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

git clone https://github.com/sensu/sandbox && cd sandbox/sensu-go

ENABLE_SENSU_SANDBOX_PORT_FORWARDING=1 vagrant up

Learn Sensu Go

In this tutorial, we’ll download the Sensu sandbox and create a monitoring workfow with Sensu.

Set up the sandbox

Lesson #1: Create a monitoring event

Lesson #2: Create an event pipeline

Lesson #3: Automate event production with the Sensu agent

Set up the sandbox

1. Install Vagrant and VirtualBox

Download Vagrant

Download VirtualBox

2. Download the sandbox

Download from GitHub or clone the repository:

3. Start Vagrant

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://github.com/sensu/sandbox/archive/master.zip
https://docs.sensu.io/sensu-go/5.7/getting-started/learn-sensu/
https://docs.sensu.io/

vagrant ssh

[sensu_go_sandbox]$

The Learn Sensu sandbox is a CentOS 7 virtual machine pre-installed with Sensu, InfuxDB, and
Grafana.
It is intended for use as a learning tool; we do not recommend this tool as part of a
production installation.
To install Sensu in production, please see the installation guide.
The sandbox
startup process takes about fve minutes.

NOTE: The sandbox confgures VirtualBox to forward TCP ports 3002 and 4002 from the
sandbox virtual machine to the localhost to make it easier for you to interact with the
sandbox dashboards. Dashboard links provided in this tutorial assume port forwarding
from the VM to the host is active.

4. SSH into the sandbox

Thanks for waiting! To start using the sandbox:

You should now have shell access to the sandbox and should be greeted with this prompt:

To exit out of the sandbox, use CTRL + D .
To erase and restart the sandbox, use vagrant destroy

then vagrant up .
To reset the sandbox’s Sensu confguration to the beginning of this tutorial, use
vagrant provision .

NOTE: The sandbox pre-confgures sensuctl with the Sensu Go admin user, so you won’t
have to confgure sensuctl each time you spin up the sandbox to try out a new feature.
Before installing sensuctl outside of the sandbox, read the frst time setup reference to
learn how to confgure sensuctl.

Lesson #1: Create a Sensu monitoring event

First off, we’ll make sure everything is working correctly by using the sensuctl command line tool.
We
can use sensuctl to see that our Sensu backend instance has a single namespace, default , and
two users: the default admin user and the user created for use by a Sensu agent.

sensuctl namespace list

 Name

─────────

 default

sensuctl user list

 Username Groups Enabled

────────── ──────────────── ─────────

admin cluster-admins true

agent system:agents true

sensuctl entity list

 ID Class OS Subscriptions Last Seen

──── ─────── ──── ─────────────── ───────────

sudo systemctl start sensu-agent

sensuctl entity list

 ID Class OS Subscriptions Last Seen

────────────────── ─────── ─────── ─────────────────────────

───────────────────────────────

sensu-go-sandbox agent linux entity:sensu-go-sandbox 2019-01-24 21:29:06 +0000 UTC

Sensu keeps track of monitored components as entities.
Let’s start by using sensuctl to make sure
Sensu hasn’t connected to any entities yet:

Now we can go ahead and start the Sensu agent to start monitoring the sandbox:

We can use sensuctl to see that Sensu is now monitoring the sandbox entity:

Sensu agents send keepalive events to help you monitor their status.
We can use sensuctl to see the
keepalive events generated by the sandbox entity:

sensuctl event list

 Entity Check Output Status Silenced Timestamp

────────────────── ───────────

──

──────── ────────── ───────────────────────────────

sensu-go-sandbox keepalive Keepalive last sent from sensu-go-sandbox at 2019-01-24 21:29:06 +0000 UTC 0

false 2019-01-24 21:29:06 +0000 UTC

sensuctl asset create sensu-slack-handler --url "https://github.com/sensu/sensu-sla

handler_1.0.3_linux_amd64.tar.gz" --sha512

The sensu-go-sandbox keepalive event has status 0, meaning the agent is in an OK state and able to
communicate with the Sensu backend.

We can also see the event and the entity in the Sensu dashboard.
Log in to the dashboard as the
default admin user: username admin and password P@ssw0rd! .

Lesson #2: Pipe keepalive events into Slack

Now that we know the sandbox is working properly, let’s get to the fun stuff: creating a workfow.
In
this lesson, we’ll create a workfow that sends keepalive alerts to Slack.
(If you’d rather not create a
Slack account, you can skip ahead to lesson 3.)

1. Get your Slack webhook URL

If you’re already an admin of a Slack, visit
https://YOUR WORKSPACE NAME HERE.slack.com/services/new/incoming-webhook and follow

the steps to add the Incoming WebHooks integration, choose a channel, and save the settings.
(If
you’re not yet a Slack admin, start here to create a new workspace.)
After saving, you’ll see your
webhook URL under Integration Settings.

2. Register the Sensu Slack handler asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
In this lesson, we’ll
use the Sensu Slack handler asset to power a slack handler.

Use sensuctl to register the Sensu Slack handler asset.

http://localhost:3002/
https://slack.com/get-started#create
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b5871

Created

sensuctl asset info sensu-slack-handler --format yaml

"env_vars": [

 "KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/AAA/BBB/CCC",

 "KEEPALIVE_SLACK_CHANNEL=#monitoring"

],

"runtime_assets": ["sensu-slack-handler"]

sensuctl create --fle sensu-slack-handler.json

sensuctl handler list

You should see a confrmation message from sensuctl.

The sensu-slack-handler asset is now ready to use with Sensu.
You can use sensuctl to see the
complete asset defnition.

PRO TIP: You can use resources defnition to create and update resources (like assets)
using sensuctl create --fle flename.yaml . See the sensuctl docs for more information.

3. Create a Sensu Slack handler

Open the sensu-slack-handler.json handler defnition provided with the sandbox, and edit the
defnition to include your Slack channel, webhook URL, and the sensu-slack-handler asset.

Now we can create a Slack handler named keepalive to process keepalive events.

You can use sensuctl to see available event handlers.

 Name Type Timeout Filters Mutator Execute

Environment Variables Assets

─────────── ────── ───────── ───────── ─────────

───

───

─────────────────────

 keepalive pipe 0 RUN:  /usr/local/bin/sensu-slack-handler -c "${KEEPALIVE_SLACK_CHANNEL}"

"${KEEPALIVE_SLACK_WEBHOOK}"

KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/XXX,KEEPALIVE_SLACK_CHANNEL=#monitor

sensuctl handler update keepalive

? Filters: [? for help] is_incident

sensuctl handler info keepalive

=== keepalive

You should see the keepalive handler.

You should now see monitoring events in Slack indicating that the sandbox entity is in an OK state.

4. Filter keepalive events

Now that we’re generating Slack alerts, let’s reduce the potential for alert fatigue by adding a flter
that only sends only warning, critical, and resolution alerts to Slack.

To accomplish this, we’ll interactively add the built-in is_incident flter to the keepalive handler so
we’ll only receive alerts when the sandbox entity fails to send a keepalive event.

When prompted for the flters selection, enter is_incident to apply the incidents flter.

We can confrm that the keepalive handler now includes the incidents flter using sensuctl:

Name: keepalive

Type: pipe

Timeout: 0

Filters: is_incident

sudo systemctl stop sensu-agent

sudo systemctl start sensu-agent

sudo systemctl restart sensu-agent

With the flter in place we should no longer be receiving messages in the Slack channel every time
the sandbox entity sends a keepalive event.

Let’s stop the agent and confrm that we receive the expected warning message.

You should see the warning message in Slack after a couple of minutes, informing you that the
sandbox entity is no longer sending keepalive events.

Before we go, start the agent to resolve the warning.

Lesson #3: Automate event production with the
Sensu agent

So far we’ve used the Sensu agent’s built-in keepalive feature, but in this lesson, we’ll create a check
that automatically produces workload-related events.
Instead of sending alerts to Slack, we’ll store
event data with InfuxDB and visualize it with Grafana.

1. Make sure the Sensu agent is running

2. Install Nginx and the Sensu HTTP Plugin

We’ll use the Sensu HTTP Plugin to monitor an Nginx server running on the sandbox.

https://www.influxdata.com/
https://grafana.com/
https://github.com/sensu-plugins/sensu-plugins-http

sudo yum install -y nginx && sudo systemctl start nginx

curl -I http://localhost:80

HTTP/1.1 200 OK

sudo sensu-install -p sensu-plugins-http

/opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u "http://localhost"

...

sensu-go-sandbox.curl_timings.http_code 200 1535670975

sensuctl asset create sensu-infuxdb-handler --url "https://github.com/sensu/sensu-i

infuxdb-handler_3.1.2_linux_amd64.tar.gz" --sha512

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9

First, install and start Nginx:

And make sure it’s working with:

Then install the Sensu HTTP Plugin:

We’ll be using the metrics-curl.rb plugin.
We can test its output using:

3. Create an InfuxDB pipeline
Now let’s create the InfuxDB pipeline to store these metrics and
visualize them with Grafana.
To create a pipeline to send metric events to InfuxDB, start by registering
the Sensu InfuxDB handler asset.

You should see a confrmation message from sensuctl.

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

Created

sensuctl asset info sensu-infuxdb-handler --format yaml

"runtime_assets": ["sensu-infuxdb-handler"]

sensuctl create --fle infux-handler.json

sensuctl handler list

sensuctl create --fle curl_timings-check.json

sensuctl check list

The sensu-infuxdb-handler asset is now ready to use with Sensu.
You can use sensuctl to see the
complete asset defnition.

Open the infux-handler.json handler defnition provided with the sandbox, and edit the
runtime_assets attribute to include the sensu-infuxdb-handler asset.

Now you can use sensuctl to create the infux-db handler.

We can use sensuctl to confrm that the handler has been created successfully.

You should see the infux-db handler.
(If you’ve completed lesson #2, you’ll also see the keepalive
handler.)

4. Create a check to monitor Nginx

Use the curl_timings-check.json fle provided with the sandbox to create a service check that
runs metrics-curl.rb every 10 seconds on all entities with the entity:sensu-go-sandbox

subscription and sends events to the InfuxDB pipeline:

 Name Command Interval Cron Timeout TTL Subscriptions

Handlers Assets Hooks Publish? Stdin? Metric Format Metric Handlers

──────────────

──

────────── ────── ───────── ───── ───────────────────────── ────────── ────────

─────── ────────── ──────── ──────────────────── ─────────────────

curl_timings /opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u "http://localhost" 10 0 0

entity:sensu-go-sandbox true false graphite_plaintext infux-db

sensuctl event info sensu-go-sandbox curl_timings --format json | jq .

...

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "value": 0.005,

 "timestamp": 1543532948,

 "tags": []

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_namelookup",

 "value": 0.005,

 "timestamp": 1543532948,

 "tags": []

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_connect",

 "value": 0.005,

 "timestamp": 1543532948,

 "tags": []

This check defnes a metrics handler and metric format.
In Sensu Go metrics are a core element of
the data model, so we can build pipelines to handle metrics separately from alerts.
This allows us to
customize our monitoring workfows to get better visibility and reduce alert fatigue.

After about 10 seconds, we can see the event produced by the entity:

 }

]

 }

sudo systemctl stop nginx

sudo systemctl start nginx

sudo sensu-install -p sensu-plugins-disk-checks

/opt/sensu-plugins-ruby/embedded/bin/metrics-disk-usage.rb

Because we confgured a metric format, the Sensu agent was able to convert the Graphite-
formatted metrics provided by the check command into a set of Sensu-formatted metrics.
Metric
support isn’t limited to just Graphite; the Sensu agent can extract metrics in multiple line protocol
formats, including Nagios performance data.
.

5. See the HTTP response code events for Nginx in Grafana.

Log in to Grafana as username: admin and password: admin .
We should see a graph of live HTTP
response codes for Nginx.

Now if we turn Nginx off, we should see the impact in Grafana:

Start Nginx:

6. Automate disk usage monitoring for the sandbox

Now that we have an entity set up, we can easily add more checks.
For example, let’s say we want to
monitor disk usage on the sandbox.

First, install the plugin:

And test it:

http://localhost:4002/d/go01/sensu-go-sandbox

sensu-core-sandbox.disk_usage.root.used 2235 1534191189

sensu-core-sandbox.disk_usage.root.avail 39714 1534191189

...

sensuctl create --fle disk_usage-check.json

sensuctl event list

Then create the check using sensuctl and the disk_usage-check.json fle included with the
sandbox, assigning it to the entity:sensu-go-sandbox subscription and the InfuxDB pipeline:

We should see it working in the dashboard entity view and via sensuctl:

Now we should be able to see disk usage metrics for the sandbox in Grafana.

You made it! You’re ready for the next level of Sensu-ing.
Here are some resources to help continue
your journey:

Install Sensu Go

Collect StatsD metrics

Create a ready-only user

About Sensu

http://localhost:3002/#/entities
http://localhost:4002/d/go02/sensu-go-sandbox-combined

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Sensu Go media

Talks

Greg Poirier - Sensu Go Deep Dive at Sensu Summit 2017

Greg Poirier - Sensu Go Assets

Sean Porter, Infux Days - Data Collection & Prometheus Scraping with Sensu 5.0

Blog posts

Simon Plourde: Understanding RBAC in Sensu Go

Sean Porter: Self-service monitoring checks in Sensu Go

Christian Michel - How to monitor 1,000 network devices using Sensu Go and Ansible

Eric Chlebek - Filters: valves for the Sensu monitoring event pipeline

Greg Schofeld - Sensu Habitat Core Plans are Here

Nikki Attea - Check output metric extraction with InfuxDB & Grafana

Jef Spaleta - Migrating to 5.0

Anna Plotkin - Sensu Go is here!

Tutorials

Sensu sandbox tutorials

Podcasts

Sensu Community Chat November 2018

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://www.youtube.com/watch?v=mfOk0mOfkvA
https://www.youtube.com/watch?v=JNHs4VD_-1M&t=1s
https://www.youtube.com/watch?v=vn32Gx8rL4o
https://blog.sensu.io/understanding-rbac-in-sensu-go
https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go
https://blog.sensu.io/network-monitoring-tools-sensu-ansible
https://blog.sensu.io/filters-valves-for-the-sensu-monitoring-event-pipeline
https://blog.chef.io/2018/08/22/guest-post-sensu-habitat-core-plans-are-here/
http://blog.sensu.io/check-output-metric-extraction-with-influxdb-grafana
https://blog.sensu.io/migrating-to-2.0-the-good-the-bad-the-ugly
https://blog.sensu.io/sensu-go-is-here
https://www.youtube.com/watch?v=5tIPv-rJMZU
https://docs.sensu.io/sensu-go/5.7/getting-started/media/
https://docs.sensu.io/

NOTE: Prior to October 2018, Sensu Go was known as Sensu 2.0.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Using the Sensu Prometheus Collector

Set up

Install and confgure Prometheus

Install and confgure Sensu Go

Install and confgure InfuxDB

Install and confgure Grafana

Create a Sensu InfuxDB pipeline

Install Sensu InfuxDB handler

Create a Sensu handler

Collect Prometheus metrics with Sensu

Install Sensu Prometheus Collector

Add a Sensu check to complete the pipeline

Visualize metrics with Grafana

Confgure a dashboard in Grafana

View metrics in Grafana

What is the Sensu Prometheus Collector?

The Sensu Prometheus Collector is a check plugin that collects metrics from a Prometheus exporter
or the Prometheus query API . This allows Sensu to route the collected metrics to one or more time
series databases, such as InfuxDB or Graphite.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://github.com/sensu/sensu-prometheus-collector
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://docs.sensu.io/sensu-go/5.7/getting-started/prometheus-metrics/
https://docs.sensu.io/

wget

https://github.com/prometheus/prometheus/releases/download/v2.6.0/prometheus-

2.6.0.linux-amd64.tar.gz

tar xvfz prometheus-*.tar.gz

cd prometheus-*

Why use Sensu with Prometheus?

The Prometheus ecosystem contains a number of actively maintained exporters, such as the node
exporter for reporting hardware and operating system metrics or Google’s cAdvisor exporter for
monitoring containers. These exporters expose metrics which Sensu can collect and route to one or
more time series databases, such as InfuxDB or Graphite. Both Sensu and Prometheus can run in
parallel, complimenting each other and making use of environments where Prometheus is already
deployed.

In this guide

This guide uses CentOS 7 as the operating system with all components running on the same
compute resource. Commands and steps may change for different distributions or if components
are running on different compute resources.

At the end, you will have Prometheus scraping metrics. The Sensu Prometheus Collector will then
query the Prometheus API as a Sensu check, send those to an InfuxDB Sensu handler, which will
send metrics to an InfuxDB instance. Finally, Grafana will query InfuxDB to display those collected
metrics.

Set up

Install and confgure Prometheus

Download and extract Prometheus.

Replace the default prometheus.yml confguration fle with the following confguration.

https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/google/cadvisor

global:

 scrape_interval: 15s

 external_labels:

 monitor: 'codelab-monitor'

scrape_confgs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_confgs:

 - targets: ['localhost:9090']

nohup ./prometheus --confg.fle=prometheus.yml > prometheus.log 2>&1 &

[1] 7647

ps -ef | grep prometheus

vagrant 7647 3937 2 22:23 pts/0 00:00:00 ./prometheus --

confg.fle=prometheus.yml

subscriptions:

 - "app_tier"

Start Prometheus in the background.

Ensure Prometheus is running.

Install and confgure Sensu Go

Follow the RHEL/CentOS install instructions for the Sensu backend, Sensu agent and sensuctl.

Add an app_tier subscription to /etc/sensu/agent.yml .

Restart the sensu agent to apply the confguration change.

systemctl restart sensu-agent

systemctl status sensu-backend

systemctl status sensu-agent

echo "[infuxdb]

name = InfuxDB Repository - RHEL \$releasever

baseurl = https://repos.infuxdata.com/rhel/\$releasever/\$basearch/stable

enabled = 1

gpgcheck = 1

gpgkey = https://repos.infuxdata.com/infuxdb.key" | sudo tee

/etc/yum.repos.d/infuxdb.repo

sudo yum -y install infuxdb

[http]

 # Determines whether HTTP endpoint is enabled.

 enabled = true

Ensure Sensu services are running.

Install and confgure InfuxDB

Add InfuxDB repo.

Install InfuxDB.

Open /etc/infuxdb/infuxdb.conf and uncomment the http API line.

Start InfuxDB.

sudo systemctl start infuxdb

infux -execute "CREATE DATABASE sensu"

infux -execute "CREATE USER sensu WITH PASSWORD 'sensu'"

infux -execute "GRANT ALL ON sensu TO sensu"

sudo yum install -y https://s3-us-west-2.amazonaws.com/grafana-

releases/release/grafana-5.1.4-1.x86_64.rpm

sudo sed -i 's/^;http_port = 3000/http_port = 4000/' /etc/grafana/grafana.ini

apiVersion: 1

deleteDatasources:

 - name: InfuxDB

 orgId: 1

datasources:

Add the Sensu user and database.

Install and confgure Grafana

Install Grafana.

Change Grafana’s listen port to not confict with the Sensu Dashboard.

Create a /etc/grafana/provisioning/datasources/infuxdb.yaml fle, and add an InfuxDB data
source.

 - name: InfuxDB

 type: infuxdb

 access: proxy

 orgId: 1

 database: sensu

 user: grafana

 password: grafana

 url: http://localhost:8086

systemctl start grafana-server

wget -q -nc https://github.com/sensu/sensu-infuxdb-

handler/releases/download/3.0.1/sensu-infuxdb-handler_3.0.1_linux_amd64.tar.gz -

P /tmp/

tar xvfz /tmp/sensu-infuxdb-handler_3.0.1_linux_amd64.tar.gz -C /tmp/

cp /tmp/bin/sensu-infuxdb-handler /usr/local/bin/

{

 "type": "Handler",

 "api_version": "core/v2",

Start Grafana.

Create a Sensu InfuxDB pipeline

Install Sensu InfuxDB handler

Create a Sensu handler

Given the following handler defnition in a fle called handler.json :

 "metadata": {

 "name": "infuxdb",

 "namespace": "default"

 },

 "spec": {

 "command": "/usr/local/bin/sensu-infuxdb-handler -a 'http://127.0.0.1:8086'

-d sensu -u sensu -p sensu",

 "env_vars": [],

 "timeout": 10,

 "type": "pipe"

 }

}

sensuctl create --fle handler.json

wget -q -nc https://github.com/sensu/sensu-prometheus-

collector/releases/download/1.1.4/sensu-prometheus-

collector_1.1.4_linux_386.tar.gz -P /tmp/

tar xvfz /tmp/sensu-prometheus-collector_1.1.4_linux_386.tar.gz -C /tmp/

cp /tmp/bin/sensu-prometheus-collector /usr/local/bin/

/usr/local/bin/sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up

Use sensuctl to add the handler to Sensu.

Collect Prometheus metrics with Sensu

Install Sensu Prometheus Collector

Confrm the collector can get metrics from Prometheus.

up,instance=localhost:9090,job=prometheus value=1 1549991087

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_metrics",

 "namespace": "default"

 },

 "spec": {

 "command": "/usr/local/bin/sensu-prometheus-collector -prom-url

http://localhost:9090 -prom-query up",

 "handlers": [

 "infuxdb"

],

 "interval": 10,

 "publish": true,

 "output_metric_format": "infuxdb_line",

 "output_metric_handlers": [],

 "subscriptions": [

 "app_tier"

],

 "timeout": 0

 }

}

sensuctl create --fle check.json

Add a Sensu check to complete the pipeline

Given the following check defnition in a fle called check.json :

PRO TIP: sensuctl create -f also accepts fles containing multiple resources defnitions.

Use sensuctl to add the check to Sensu.

sensuctl event list

 Entity Check Output Status Silenced Timestamp

────────────── ────────────────────

──

──────── ────────── ───────────────────────────────

sensu-centos keepalive Keepalive last sent from sensu-centos at 2019-02-12 01:01:37 +0000 UTC 0 false

2019-02-12 01:01:37 +0000 UTC

sensu-centos prometheus_metrics up,instance=localhost:9090,job=prometheus value=1 1549933306 0

false 2019-02-12 01:01:46 +0000 UTC

wget https://docs.sensu.io/sensu-go/5.0/fles/up_or_down_dashboard.json

curl -XPOST -H 'Content-Type: application/json' -d@up_or_down_dashboard.json

HTTP://admin:admin@127.0.0.1:4000/api/dashboards/db

We can see the events generated by the prometheus_metrics check in the Sensu dashboard.
Visit
http://127.0.0.1:3000 , and log in as the default admin user: username admin and password
P@ssw0rd! .

We can also see the metric event data using sensuctl.

Visualize metrics with Grafana

Confgure a dashboard in Grafana

Download the Grafana dashboard confguration fle from the Sensu docs.

Using the downloaded fle, add the dashboard to Grafana using an API call.

View metrics in Grafana

http://127.0.0.1:3000/

Confrm metrics in Grafana with admin:admin login at http://127.0.0.1:4000 .

Once logged in, click on Home in the upper left corner, then below click on the Up or Down Sample
2 dashboard. Once there, you should see a graph that has started showing metrics like this

Conclusion

You should now have a working setup with Prometheus scraping metrics. The Sensu Prometheus
Collecting is being ran via a Sensu check and collecting those metrics from Prometheus’ API. The
metrics are then handled by the InfuxDB handler, sent to InfuxDB and then visualized by a Grafana
Dashboard.

Using this information, you can now plug the Sensu Prometheus Collector into your Sensu
ecosystem and leverage Prometheus to gather metrics and Sensu to send them to the proper fnal
destination. Prometheus has a comprehensive list of additional exporters to pull in metrics.

http://127.0.0.1:4000/
https://prometheus.io/docs/instrumenting/exporters/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Container and application monitoring with
Sensu

In this tutorial, we’ll deploy a sample app with Kubernetes and monitor it with Sensu.
The sample app
has three endpoints: / returns the local hostname, /metrics returns Prometheus metric data,
/healthz returns the boolean health state, and POST /healthz toggles the health state.

Prerequisites

Setup

Multitenancy

Deploying Sensu agents and InfuxDB

Monitoring an app

Create a Sensu pipeline to Slack

Create a Sensu service check

Collecting app metrics

Create a Sensu pipeline to InfuxDB

Create a Sensu metric check

Visualize metrics with Grafana

Collecting Kubernetes metrics

Next steps

Prerequisites

All Platforms

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/getting-started/sample-app/
https://docs.sensu.io/

git clone https://github.com/sensu/sensu-kube-demo && cd sensu-kube-demo

minikube start

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-

nginx/master/deploy/mandatory.yaml

minikube addons enable ingress

kubectl create -f go/ingress-nginx/ingress/sensu-go.yaml

git clone https://github.com/kubernetes/kube-state-metrics

kubectl apply -f kube-state-metrics/kubernetes

The sample app requires Kubernetes and a Kubernetes Ingress controller.
Most hosted Kubernetes
offerings, such as GKE, include a Kubernetes Ingress controller.

In this tutorial, we’ll be using Minikube, a cross-platform application for running a local single-node
Kubernetes cluster.
After you’ve installed and started Minikube, proceed through the rest of the guide.

Setup

1. Clone the sample app.

2. Create the Kubernetes ingress resources.

3. Deploy kube-state-metrics.

4. Open your /etc/hosts fle and add the following hostnames.

NOTE: Here we’ll use the IP address for the Minikube VM in our hosts fle. To view the
address, use the command minikube ip .

https://kubernetes.io/docs/tasks/tools/install-minikube/

192.168.99.100 sensu.local webui.sensu.local sensu-enterprise.local

dashboard.sensu-enterprise.local

192.168.99.100 infuxdb.local grafana.local dummy.local

kubectl apply -f go/deploy/dummy.yaml

Linux/macOS

curl -i http://dummy.local

Windows

Invoke-WebRequest -Uri http://dummy.local -Method GET

kubectl create -f go/deploy/sensu-backend.yaml

5. Install sensuctl.

Jump over to the sensuctl installation guide, and follow the instructions to install sensuctl on
Windows, macOS, or Linux.

6. Deploy two instances of the sample app (dummy) behind a load balancer.

We can test the dummy app using the API.

A 200 response indicates that the dummy app is working correctly.

7. Deploy the Sensu backend

Multitenancy

Use Sensu role-based access control to create a demo namespace and a demo user.

sensuctl confgure

? Sensu Backend URL: http://sensu.local

? Username: admin

? Password: P@ssw0rd!

? Namespace: default

? Preferred output format: tabular

sensuctl namespace create demo

sensuctl namespace list

sensuctl confg set-namespace demo

sensuctl role create dev \

--verb get,list,create,update,delete \

--resource * --namespace demo

sensuctl role-binding create dev --role dev --group dev

1. Confgure sensuctl to use the built-in admin user.

2. Create a demo namespace.

We can use sensuctl to confrm that the namespace was created successfully and set the demo

namespace as the default for our sensuctl session.

3. Create a dev user role with full-access to the demo namespace.

4. Create a dev role binding for the dev group.

5. Create a demo user that is a member of the dev group.

sensuctl user create demo --interactive

? Username: demo

? Password: password

? Groups: dev

sensuctl confgure

? Sensu Backend URL: http://sensu.local

? Username: demo

? Password: password

? Namespace: demo

? Preferred output format: tabular

kubectl create confgmap infuxdb-confg --from-fle go/confgmaps/infuxdb.conf

kubectl create -f go/deploy/infuxdb.sensu.yaml

6. Reconfgure sensuctl to use the demo user and demo namespace.

Deploying Sensu agents and InfuxDB

1. Deploy InfuxDB with a Sensu agent sidecar

Create a Kubernetes ConfgMap for InfuxDB confguration.

Deploy InfuxDB with a Sensu agent sidecar.

2. Create a Sensu pipeline to store metrics with InfuxDB.

Use the fles provided with the sample app to create a Sensu asset for the Sensu InfuxDB handler
and create an infuxdb event handler.

https://github.com/sensu/sensu-influxdb-handler

sensuctl create --fle go/confg/assets/infuxdb-handler.yaml

sensuctl create --fle go/confg/handlers/infuxdb.yaml

kubectl apply -f go/deploy/dummy.sensu.yaml

sensuctl entity list

 ID Class OS Subscriptions Last Seen

─────────────────────────── ─────── ───────

─── ───────────────────────────────

dummy-76d8fb7bdf-967q7 agent linux dummy,entity:dummy-76d8fb7bdf-967q7 2019-01-18 10:56:56 -0800

PST

dummy-76d8fb7bdf-knh7r agent linux dummy,entity:dummy-76d8fb7bdf-knh7r 2019-01-18 10:56:56 -0800

PST

infuxdb-64b7d5f884-f9ptg agent linux infuxdb,entity:infuxdb-64b7d5f884-f9ptg 2019-01-18 10:56:59 -0800

PST

3. Deploy Sensu agent sidecars for the dummy app instances.

Monitoring an app

Let’s take a look at what we’re monitoring.
We can see the Sensu agents installed on our two dummy
app instances with their last seen timestamp, as well as the Sensu agent monitoring our InfuxDB
instance.

Create a Sensu pipeline to Slack

Let’s say we want to receive a Slack alert if the dummy app returns an unhealthy response.
We can
create a Sensu pipeline to send events to Slack using the Sensu Slack plugin.
Sensu Plugins are open-
source collections of Sensu building blocks shared by the Sensu Community.

1. Create an asset to help agents fnd and install the Sensu Slack handler.

https://github.com/sensu/sensu-slack-handler
https://github.com/sensu/sensu-slack-handler

sensuctl create --fle go/confg/assets/slack-handler.yaml

"command": "slack-handler --channel '#demo' --timeout 20 --username 'sensu' --

webhook-url 'SECRET'",

"command": "slack-handler --channel '#my-channel' --timeout 20 --username

'sensu' --webhook-url 'https://hooks.slack.com/services/XXXXXXXXXXXXXXXX'",

sensuctl create --fle go/confg/handlers/slack.yaml

2. Get your Slack webhook URL and add it to go/confg/handlers/slack.yaml .

If you’re already an admin of a Slack, visit
https://YOUR WORKSPACE NAME HERE.slack.com/services/new/incoming-webhook and follow

the steps to add the Incoming WebHooks integration and save the settings.
(If you’re not yet a Slack
admin, start here to create a new workspace.)
After saving, you’ll see your webhook URL under
Integration Settings.

Open go/confg/handlers/slack.yaml and replace SECRET in the following line with your Slack
workspace webhook URL and #demo with the Slack channel of your choice:

So it looks something like:

3. Create a handler to send events to Slack using the slack-handler asset.

Create a Sensu service check to monitor the status of the
dummy app

To automatically monitor the status of the dummy app, we’ll create an asset that lets the Sensu
agents use a Sensu HTTP plugin.

1. Create the check-plugins asset.

https://slack.com/get-started#create
https://github.com/portertech/sensu-plugins-go

sensuctl create --fle go/confg/assets/check-plugins.yaml

sensuctl create --fle go/confg/checks/dummy-app-healthz.yaml

Linux/macOS

curl -iXPOST http://dummy.local/healthz

Windows

Invoke-WebRequest -Uri http://dummy.local/healthz -Method POST

sensuctl event list

Linux/macOS

curl -iXPOST http://dummy.local/healthz

2. Now we can create a check to monitor the status of the dummy app that uses the
check-plugins asset and the Slack pipeline.

3. With the automated alert workfow in place, we can see the resulting events in the
Sensu dashboard.

Sign in to the Sensu dashboard with your sensuctl username (demo) and password (password).
Since we’re working within the demo namespace, select the demo namespace in the Sensu
dashboard menu.

4. Toggle the health of the dummy app to simulate a failure.

We should now be able to see a critical alert in the Sensu dashboard as well as by using sensuctl:

You should also see an alert in Slack.

Continue to post to /healthz until all Sensu entities return to a healthy state.

http://webui.sensu.local/signin
http://webui.sensu.local/events

Windows

Invoke-WebRequest -Uri http://dummy.local/healthz -Method POST

sensuctl create --fle go/confg/assets/prometheus-collector.yaml

sensuctl create --fle go/confg/checks/dummy-app-prometheus.yaml

kubectl create confgmap grafana-provisioning-datasources --from-

fle=./go/confgmaps/grafana-provisioning-datasources.yaml

kubectl create confgmap grafana-provisioning-dashboards --from-

Collecting app metrics

Create a Sensu metric check to collect Prometheus metrics

To automatically collect Prometheus metrics from the dummy app, we’ll create an asset that lets
the Sensu agents use the Sensu Prometheus plugin.

1. Create the prometheus-collector asset.

2. Now we can create a check to collect Prometheus metrics that uses the prometheus-

collector asset.

Visualize metrics with Grafana

1. Deploy Grafana with a Sensu agent sidecar.

Create Kubernetes ConfgMaps for Grafana confguration.

https://github.com/sensu/sensu-prometheus-collector

fle=./go/confgmaps/grafana-provisioning-dashboards.yaml

kubectl apply -f go/deploy/grafana.sensu.yaml

sensuctl entity list

 ID Class OS Subscriptions Last Seen

─────────────────────────── ─────── ───────

─── ───────────────────────────────

dummy-6c57b8f868-ft5dz agent linux dummy,entity:dummy-6c57b8f868-ft5dz 2018-11-20 18:43:15 -0800

PST

dummy-6c57b8f868-m24hw agent linux dummy,entity:dummy-6c57b8f868-m24hw 2018-11-20 18:43:15

-0800 PST

grafana-5b88f8df8d-vgjtm agent linux grafana,entity:grafana-5b88f8df8d-vgjtm 2018-11-20 18:43:14 -0800 PST

infuxdb-78d64bcfd9-8km56 agent linux infuxdb,entity:infuxdb-78d64bcfd9-8km56 2018-11-20 18:43:12 -0800

PST

Deploy Grafana with a Sensu agent sidecar.

After a few minutes, we can see the Sensu agents we have installed on the dummy app, InfuxDB,
and Grafana pods.

2. Log in to Grafana.

To see the metrics we’re collecting from the dummy app, log into Grafana with the username
admin and password password .

3. Create a dashboard.

Create a new dashboard using the InfuxDB datasource to see live metrics from the dummy app.

Collecting Kubernetes metrics

Now that we have a pipeline set up to send metrics, we can create a check that collects Prometheus
metrics from Kubernetes and connect it to the pipeline.

http://grafana.local/login

kubectl apply -f go/deploy/sensu-agent-daemonset.yaml

sensuctl create --fle go/confg/checks/kube-state-prometheus.yaml

Deploy a Sensu agent as a dameonset on your Kubernetes node.

Then create a check to collect Prometheus metrics from Kubernetes using the
prometheus-collector asset and infuxdb handler.

You should now be able to access Kubernetes metric data in Grafana and see metric events in the
Sensu dashboard.

Next steps

To stop or delete the sample app, use minikube stop or minikube delete respectively.

For more information about monitoring with Sensu, check out the following resources:

Reducing alert fatigue with Sensu flters

Aggregating StatD metrics with Sensu

Aggregating Nagios metrics with Sensu

About Sensu

http://grafana.local/
http://webui.sensu.local/events

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Sensu sandbox

Welcome to the Sensu sandbox! The sandbox is the best place to get started with Sensu and try out
new features.

Learn Sensu

Start here: Building your frst monitoring workfow

Container monitoring

Container and application monitoring with Sensu: Monitoring a Kubernetes sample app

Metrics

Sensu + Prometheus: Collecting Prometheus metrics with Sensu

Upgrading from Sensu 1.x to Sensu Go

Sensu translator: Translating check confguration

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://github.com/sensu/sandbox/tree/master/sensu-go/lesson_plans/check-upgrade
https://docs.sensu.io/sensu-go/5.7/getting-started/sandbox/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Installation

Auth

Confguration-Management

Install-Sensu

Platforms

Plugins

Recommended-Hardware

Upgrade

Verify

Versions

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/installation/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Authentication

Sensu requires username and password authentication to access the Sensu dashboard, API, and
command line tool (sensuctl).
For Sensu’s default user credentials and more information about
confguring Sensu role based access control, see the RBAC reference and guide to creating users.

In addition to built-in RBAC, enterprise-only support for authentication using an authentication
provider is available in Sensu Go 5.2.0 and later.
See the upgrade guide to upgrade your Sensu
installation, and visit the latest documentation to confgure an authentication provider.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/getting-started/enterprise
https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/installation/auth
https://docs.sensu.io/sensu-go/5.7/installation/auth/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Confguration Management

We highly recommend using confguration management tools to deploy Sensu in production and at
scale.

Pin versions of Sensu-related software to ensure repeatable Sensu deployments.

Ensure consistent confguration between Sensu Servers.

The following confguration management tools have well-defned Sensu modules to help you get
started.

Puppet

The Puppet Sensu module can be found on the GitHub.
Sensu has partnered with Learn Puppet to
enhance the Puppet module with new features and bug fxes.

Chef

The Chef cookbook for Sensu can be found on the GitHub. Interested in more information on Sensu
+ Chef? Get some helpful resources here.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://puppet.com/
https://github.com/sensu/sensu-puppet
http://learnpuppet.com/
https://www.chef.io/
https://github.com/sensu/sensu-go-chef
http://monitoringlove.sensu.io/chef
https://docs.sensu.io/sensu-go/5.7/installation/configuration-management/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh

| sudo bash

sudo apt-get install sensu-go-backend

Installing Sensu

Select a platform from the dropdown above.
Sensu Go is available for Linux, Windows (agent and CLI
only), macOS (CLI only), and Docker.
See the list of supported platforms for more information.
Sensu
downloads are provided under the Sensu License.

Install the Sensu backend

The Sensu backend is available for Ubuntu, RHEL/CentOS, and Docker.

1. Install the package

Ubuntu

Add the Sensu repository.

Install the sensu-go-backend package.

All Platforms

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://sensu.io/sensu-license
https://docs.sensu.io/sensu-go/5.7/installation/install-sensu/
https://docs.sensu.io/

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh

| sudo bash

sudo yum install sensu-go-backend

sudo cp /usr/share/doc/sensu-go-backend-5.0.1/backend.yml.example

/etc/sensu/backend.yml

sudo service sensu-backend start

RHEL/CentOS

Add the Sensu repository.

Install the sensu-go-backend package.

2. Create the confguration fle

Copy the example backend confg fle to the default confg path.

NOTE: The Sensu backend can be confgured using a /etc/sensu/backend.yml

confguration fle or using sensu-backend start confguration fags. For more
information, see the backend reference.

3. Start the service

Start the backend using a service manager.

Verify that the backend is running.

service sensu-backend status

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh

| sudo bash

sudo apt-get install sensu-go-agent

Next steps

Now that you’ve installed the Sensu backend:

Install the Sensu agent

Install sensuctl

Sign in to the dashboard

Install the Sensu agent

The Sensu agent is available for Ubuntu, RHEL/CentOS, Windows, and Docker.

1. Install the package

Ubuntu

Add the Sensu repository.

Install the sensu-go-agent package.

RHEL/CentOS

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh

| sudo bash

sudo yum install sensu-go-agent

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-

go/5.0.1/sensu-go-5.0.1-windows-amd64.tar.gz -OutFile "$env:userprofle\sensu-

go-5.0.1-windows-amd64.tar.gz"

sudo cp /usr/share/doc/sensu-go-agent-5.0.1/agent.yml.example

/etc/sensu/agent.yml

Install the sensu-go-agent package.

Windows

Download the Sensu agent for Windows .

See the verifying Sensu guide to verify your download using checksums.

2. Create the confguration fle

Ubuntu/RHEL/CentOS

Copy the example agent confg fle to the default confg path.

NOTE: The Sensu agent can be confgured using a /etc/sensu/agent.yml confguration
fle or using sensu-agent start confguration fags. For more information, see the agent
reference.

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.0.1/sensu-go-5.0.1-windows-amd64.tar.gz

sudo service sensu-agent start

service sensu-agent status

Windows

Download the example agent confguration fle and save it as
C:\\ProgramData\sensu\confg\agent.yml .

3. Start the service

Ubuntu/RHEL/CentOS

Start the agent using a service manager.

Verify that the agent is running.

Windows

Coming soon.

Next steps

Now that you’ve installed the Sensu agent:

Install sensuctl

Create a monitoring event

Install sensuctl

Sensu Go can be confgured and used with the sensuctl command line utility.
Sensuctl is available for

https://github.com/sensu/sensu-go/blob/5.1.1/packaging/files/windows/agent.yml.example

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh

| sudo bash

sudo apt-get install sensu-go-cli

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh

| sudo bash

sudo yum install sensu-go-cli

Ubuntu, RHEL/CentOS, Windows, and macOS.

1. Install the package

Ubuntu

Add the Sensu repository.

Install the sensu-go-cli package.

RHEL/CentOS

Add the Sensu repository.

Install the sensu-go-cli package.

Windows

Download sensuctl for Windows .

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.0.1/sensu-go-5.0.1-windows-amd64.tar.gz

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-

go/5.0.1/sensu-go-5.0.1-windows-amd64.tar.gz -OutFile

C:\Users\Administrator\sensu-go-5.0.1-windows-amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.0.1/sensu-go-

5.0.1-darwin-amd64.tar.gz

tar -xvf sensu-go-5.0.1-darwin-amd64.tar.gz

sudo cp bin/sensuctl /usr/local/bin/

$ sensuctl confgure

? Sensu Backend URL: http://127.0.0.1:8080

? Username: admin

? Password: *********

? Namespace: default

See the verifying Sensu guide to verify your download using checksums.

macOS

Download the latest release. See the verifying Sensu guide to verify your download using checksums.

Extract the archive.

Copy the executable into your PATH.

2. Confgure sensuctl

You must confgure sensuctl before it can connect to Sensu Go.
Run sensuctl confgure to get
started.

? Preferred output format: tabular

$ sensuctl user change-password --interactive

? Current Password: *********

? Password: *********

? Confrm: *********

sensuctl confg set-namespace default

By default, your Sensu installation comes with a user named admin with password P@ssw0rd! .
We
strongly recommended that you change the password immediately.
Once authenticated, you can
change the password using the change-password command.

You can change individual values of your sensuctl confguration with the confg subcommand.

See the sensuctl reference for more information about using sensuctl.

Next steps

Now that you’ve installed sensuctl:

See the sensuctl quick reference

Create a monitoring event pipeline

Deploy Sensu with Docker

Sensu Go can be run via Docker or rkt using the sensu/sensu image. When running Sensu from
Docker there are a couple of things to take into consideration.

The backend requires four exposed ports and persistent storage. This example uses a shared
flesystem. Sensu Go is backed by a distributed database, and its storage should be provisioned
accordingly. We recommend local storage or something like Throughput Optimized or Provisioned
IOPS EBS if local storage is unavailable. The exposed ports are:

https://www.docker.com/
https://coreos.com/rkt
https://hub.docker.com/r/sensu/sensu/

docker run -v /var/lib/sensu:/var/lib/sensu -d --name sensu-backend -p 2380:2380

\

-p 3000:3000 -p 8080:8080 -p 8081:8081 sensu/sensu:latest sensu-backend start

docker run -v /var/lib/sensu:/var/lib/sensu -d --name sensu-agent \

sensu/sensu:latest sensu-agent start --backend-url

ws://sensu.yourdomain.com:8081 \

--subscriptions webserver,system --cache-dir /var/lib/sensu

2380: Sensu storage peer listener (only other Sensu backends need access to this port)

3000: Sensu dashboard

8080: Sensu API (all users need access to this port)

8081: Agent API (all agents need access to this port)

We suggest, but do not require, persistent storage for Sensu backends and Sensu agents. The Sensu
agent will cache runtime assets locally for each check, and the Sensu backend will cache runtime
assets locally for each handler and mutator. This storage should be unique per sensu-
backend/sensu-agent process.

Start a Sensu backend

Start a Sensu agent

In this case, we’re starting an agent with the webserver and system subscriptions as an example.
This
assumes that the Sensu backend is running on another host named sensu.yourdomain.com.
If you
are running these locally on the same system, add --link sensu-backend to your Docker
arguments, and change the backend URL to --backend-url ws://sensu-backend:8081 .

NOTE: You can confgure the backend and agent log levels by using the --log-level fag
on either process. Log levels include panic , fatal , error , warn , info , and debug ,
defaulting to warn .

sensuctl and Docker

It’s best to run sensuctl locally and point it at the exposed API port for your the Sensu backend.
The
sensuctl utility stores confguration locally, and you’ll likely want to persist it across uses.
While it can
be run from the docker container, doing so may be problematic.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Supported platforms

Sensu backend

The Sensu backend is available for 64-bit Linux.
See the backend installation guide for more
information.

Platform &
Version

amd64

CentOS/RHEL 5

CentOS/RHEL 6

CentOS/RHEL 7

Ubuntu 16.04

Ubuntu 18.04

Ubuntu 18.10

Sensu agent

The Sensu agent is available for Linux and Windows.
See the agent installation guide for more
information.

Platform &
Version

amd64

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/installation/platforms/
https://docs.sensu.io/

CentOS 5/RHEL

CentOS 6/RHEL

CentOS 7/RHEL

Ubuntu 16.04

Ubuntu 18.04

Ubuntu 18.10

Windows Server
2008 R2 and later

Sensuctl command-line tool

Sensuctl is available for Linux, Windows, and macOS.
See the sensuctl installation guide for more
information.

Platform &
Version

amd64

CentOS 5/RHEL

CentOS 6/RHEL

CentOS 7/RHEL

Ubuntu 16.04

Ubuntu 18.04

Ubuntu 18.10

Windows 7 and later

Windows Server
2008 R2 and later

macOS 10.10 and
later

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Installing Sensu Plugins

Sensu’s functionality can be extended through the use of plugins.
Plugins can provide executables for
performing status or metric checks, mutators for changing data to a desired format, or handlers for
performing an action on a Sensu event.

Installing plugins using Bonsai, the Sensu asset index

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
You can use
assets to provide the plugins, libraries, and runtimes you need to automate your monitoring
workfows.
Visit Bonsai to discover, download, and share assets, and get started with these helpful
resources.

Bonsai, the Sensu asset index

Installing plugins with assets

Sharing assets on Bonsai

Installing plugins using the sensu-install tool

You can fnd a number of plugins in the Sensu Plugins organization on GitHub.

NOTE: Plugins found in the Sensu Plugins GitHub organization are community-maintained,
meaning that anyone can improve on a plugin found there. If you have a question about
how you can get involved in adding to, or providing a plugin, head to the Sensu
Community Slack channel. Maintainers are always happy to help answer questions and
point you in the right direction.

To install a Sensu Community Plugin with Sensu Go:

1. Install the sensu-plugins-ruby package from packagecloud.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://bonsai.sensu.io/
https://bonsai.sensu.io/
https://github.com/sensu-plugins
https://slack.sensu.io/
https://slack.sensu.io/
https://github.com/sensu-plugins
https://packagecloud.io/sensu/community
https://docs.sensu.io/sensu-go/5.7/installation/plugins/
https://docs.sensu.io/

sensu-install --help

Usage: sensu-install [options]

 -h, --help Display this message

 -v, --verbose Enable verbose logging

 -p, --plugin PLUGIN Install a Sensu PLUGIN

 -P, --plugins PLUGIN[,PLUGIN] PLUGIN or comma-delimited list of Sensu

plugins to install

 -e, --extension EXTENSION Install a Sensu EXTENSION

 -E, --extensions EXTENSION[,EXT] EXTENSION or comma-delimited list of Sensu

extensions to install

 -s, --source SOURCE Install Sensu plugins and extensions from a

custom SOURCE

 -c, --clean Clean up (remove) other installed versions

of the plugin(s) and/or extension(s)

 -x, --proxy PROXY Install Sensu plugins and extensions via a

PROXY URL

sudo sensu-install -p disk-checks

sudo sensu-install -p 'sensu-plugins-disk-checks:3.1.0'

2. Use the sensu-install command to install any plugins in the Sensu Plugins organization
on GitHub by repository name. Plugins are installed into
/opt/sensu-plugins-ruby/embedded/bin .

For example, to install the Sensu Disk Checks Plugin:

To install a specifc version of the Sensu Disk Checks Plugin with sensu-install , run:

We strongly recommend using a confguration management tool or using Sensu assets to pin the
versions of any plugins installed in production.

NOTE: Sensu Go is compatible with all check executables in the Sensu Plugins
organization. Handler and mutator executables are not yet compatible with Sensu Go.

https://github.com/sensu-plugins
https://github.com/sensu-plugins
https://github.com/sensu-plugins/sensu-plugins-disk-checks
https://github.com/sensu-plugins/sensu-plugins-disk-checks
https://github.com/sensu-plugins
https://github.com/sensu-plugins

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Hardware requirements

Sensu backend requirements

Sensu agent requirements

Networking recommendations

Cloud recommendations

Sensu backend

Backend minimum requirements

The following confguration is the minimum required to run the Sensu backend, however it is
insuffcient for production use.
See the recommended confguration for production
recommendations.

64-bit Intel or AMD CPU

4 GB RAM

4 GB free disk space

10 mbps network link

Backend recommended confguration

The following confguration is recommended as a baseline for production use to ensure a good user
and operator
experience. Using additional
resources (even over-provisioning) further improves stability
and
scalability.

64 bit 4-core Intel or AMD CPU

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/installation/recommended-hardware/
https://docs.sensu.io/

8 GB RAM

SSD (NVMe or SATA3)

Gigabit ethernet

The Sensu backend is typically CPU and storage intensive. In general, its use of
these resources scales
linearly with the total number of
checks executed by all Sensu agents connecting to the backend.

The Sensu backend is a massively parallel application that can scale to
any number of CPU cores.
Provision roughly 1 CPU core for every 50
checks per second (including agent keepalives).
Most
installations are fne with 4 CPU cores, but larger installations
may fnd that additional CPU cores (8+)
are necessary.

Every executed Sensu check results in storage writes. When
provisioning storage, a good guideline is to
have twice as many
sustained disk IOPS as you expect to have events per second. Don’t
forget to
include agent keepalives in this calculation; each agent
publishes a keepalive every 20 seconds. For
example, in a cluster of 100 agents,
you can expect those agents to consume 10 write IOPS for
keepalives.

The Sensu backend uses a relatively modest amount of RAM under most
circumstances. Larger
production deployments use a larger amount
of RAM (8+ GB).

Sensu agent

Agent minimum requirements

The following confguration is the minimum required to run the Sensu agent, however it is insuffcient
for production use.
See the recommended confguration for production recommendations.

386, amd64, or ARM CPU (armv5 minimum)

128 MB RAM

10 mbps network link

Agent recommended confguration

The following confguration is recommended as a baseline for production use to ensure a good user
and operator experience.

64 bit 4-core Intel or AMD CPU

512 MB RAM

Gigabit ethernet

The Sensu agent itself is quite lightweight, and should be able to run
on all but the most modest
hardware. However, since the agent is
responsible for executing checks, factor the agent’s
responsibilities
into your hardware provisioning.

Networking recommendations

Agent connections

Sensu uses WebSockets for communication between the agent and backend.
All communication
occurs over a single TCP socket.

It’s recommended that users connect backends and agents via gigabit
ethernet, but any somewhat-
reliable network link should work (e.g.
WiFi and 4G). If you see WebSocket timeouts in the backend
logs, you
may need to use a better network link between the backend and agents.

Cloud recommendations

AWS

The recommended EC2 instance type and size for Sensu backends running
embedded etcd is
M5d.xlarge. The
M5d instance provides
4 vCPU, 16 GB of RAM, up to 10 Gbps network connectivity,
and a 150
NVMe SSD directly attached to the instance host (optimal for sustained
disk IOPS).

https://aws.amazon.com/ec2/instance-types/m5/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Restart the Sensu agent

sudo service sensu-agent restart

Restart the Sensu backend

sudo service sensu-backend restart

Upgrading Sensu

Upgrading from 5.0.0 or later

Upgrading from 1.x or later

Upgrading to the latest version of Sensu Go from
5.0.0 or later

To upgrade to the latest version of Sensu Go from version 5.0.0 or later, frst install the latest
packages.

Then restart the services.

NOTE: For systems using systemd , run sudo systemctl daemon-reload before restarting
the services.

You can use the version command to determine the installed version using the sensu-agent ,
sensu-backend , and sensuctl tools. For example: sensu-backend version .

Migrating to Sensu Go from Sensu Core 1.x

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/installation/upgrade/
https://docs.sensu.io/

This guide provides general information for migrating your Sensu instance from Sensu Core 1.x to
Sensu Go 5.0.
For instructions and tools to help you translate your Sensu confguration from Sensu
Core 1.x to Sensu Go, see the following resources.

Sensu translator project

Jef Spaleta - Check confguration upgrades with the Sensu Go sandbox

Sensu Go includes important changes to all parts of Sensu: architecture, installation, resource
defnitions, event data model, check dependencies, flter evaluation, and more.
Sensu Go also includes
a lot of powerful features to make monitoring easier to build, scale, and offer as a self-service tool to
your internal customers.

Packaging

Architecture

Entities

Checks

Events

Handlers

Filters

Assets

Role-based access control

Silencing

Token substitution

Aggregates

API

Custom attributes

Packaging

Sensu is now provided as three packages: sensu-go-backend, sensu-go-agent, and sensu-go-cli
(sensuctl).
This results in a fundamental change in Sensu terminology from Sensu Core 1.x: the server
is now the backend; the client is now the agent.
To learn more about new terminology in Sensu Go,
see the glossary.

https://docs.sensu.io/sensu-core/1.6/
https://github.com/sensu/sensu-translator
https://blog.sensu.io/check-configuration-upgrades-with-the-sensu-go-sandbox

Architecture

The external RabbitMQ transport and Redis datastore in Sensu Core 1.x have been replaced with an
embedded transport and etcd datastore in Sensu Go.
The Sensu backend and agent are confgured
using YAML fles or using the sensu-backend or sensu-agent command-line tools, instead of
using JSON fles.
Sensu checks and pipeline elements are now confgured via the API or sensuctl tool
instead of JSON fles.
See the backend, agent, and sensuctl reference docs for more information.

Entities

“Clients” are now represented within Sensu Go as abstract “entities” that can describe a wider range
of system components (network gear, web server, cloud resource, etc.)
Entities include “agent entities”
(entities running a Sensu agent) and familiar “proxy entities”.
See the entity reference and the guide to
monitoring external resources for more information.

Checks

Standalone checks are no longer supported in Sensu Go, although similar functionality can be
achieved using role-based access control, assets, and entity subscriptions .
There are also a few
changes to check defnitions to be aware of. The stdin check attribute is no longer supported in
Sensu Go, and Sensu Go no longer tries to run a “default” handler when executing a check without a
specifed handler. Additionally, round-robin subscriptions and check subdues are not yet available in
Sensu Go.

Check hooks are now a resource type in Sensu Go, meaning that hooks can be created, managed,
and reused independently of check defnitions.
You can also execute multiple hooks for any given
response code.

Events

All check results are now considered events and are processed by event handlers.
You can use the
built-in incidents flter to recreate the Sensu Core 1.x behavior in which only check results with a non-
zero status are considered events.

Handlers

Transport handlers are no longer supported by Sensu Go, but you can create similar functionality

https://github.com/etcd-io/etcd/tree/master/Documentation
https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go
https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go

using a pipe handler that connects to a message bus and injects event data into a queue.

Filters

Ruby eval logic has been replaced with JavaScript expressions in Sensu Go, opening up powerful
possibilities to flter events based on occurrences and other event attributes.
As a result, the built-in
occurrences flter in Sensu Core 1.x is not provided in Sensu Go, but you can replicate its functionality
using this flter defnition.
Sensu Go includes three new built-in flters: only-incidents, only-metrics, and
allow-silencing.
Sensu Go does not yet include a built-in check dependencies flter or a flter-when
feature.

Assets

The sensu-install tool has been replaced in Sensu Go by assets, shareable, reusable packages that
make it easy to deploy Sensu plugins.
Sensu Plugins in Ruby can still be installed via sensu-install by
installing sensu-plugins-ruby; see the installing plugins guide for more information.

Role-based access control

Role-based access control (RBAC) is a built-in feature of the open-source version of Sensu Go.
RBAC
allows management and access of users and resources based on namespaces, groups, roles, and
bindings.
To learn more about setting up RBAC in Sensu Go, see the RBAC reference and the guide to
creating a read-only user .

Silencing

Silencing is now disabled by default in Sensu Go and must be enabled explicitly using the built-in
not_silenced flter.

Token substitution

The syntax for using token substitution has changed from using triple colons to using double curly
braces.

Aggregates

https://github.com/sensu-plugins
https://packagecloud.io/sensu/community

Sensu Go does not yet support check aggregates.

API

In addition to the changes to resource defnitions, Sensu Go includes a new, versioned API. See the
API overview for more information.

Custom atributes

Custom check attributes are no longer supported in Sensu Go.
Instead, Sensu Go provides the ability
to add custom labels and annotations to entities, checks, assets, hooks, flters, mutators, handlers,
and silencing entries.
See the metadata attributes section in the reference documentation for more
information about using labels and annotations (for example: metadata attributes for entities).

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions

Made with #monitoringlove by Sensu, Inc. © 2013-2019

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-

go/5.0.1/sensu-go-5.0.1-windows-amd64.tar.gz -OutFile "$env:userprofle\sensu-

go-5.0.1-windows-amd64.tar.gz"

Get-FileHash "$env:userprofle\sensu-go-5.0.1-windows-amd64.tar.gz" -Algorithm

SHA512 | Format-List

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-

go/5.0.1/sensu-go-5.0.1-windows-amd64.sha512sum -OutFile "$env:userprofle\sensu-

Verifying Sensu downloads

Sensu tar archives are available for Linux, Windows, and macOS.
See the installation guide for more
information.

You can verify a Sensu download using SHA-512 checksums.

Windows

Download Sensu for Windows.

Generate a SHA-512 checksum for the downloaded artifact.

The result should match (with the exception of capitalization) the output from the following
commands.

All Platforms

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/installation/verify/
https://docs.sensu.io/

go-5.0.1-windows-amd64.sha512sum"

Get-Content "$env:userprofle\sensu-go-5.0.1-windows-amd64.sha512sum"

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.0.1/sensu-go-

5.0.1-darwin-amd64.tar.gz

shasum -a 512 sensu-go-5.0.1-darwin-amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.0.1/sensu-go-

5.0.1-darwin-amd64.sha512sum && cat sensu-go-5.0.1-darwin-amd64.sha512sum

macOS

Download Sensu for macOS.

Generate a SHA-512 checksum for the downloaded artifact.

The result should match the output from the following command.

About Sensu

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Supported versions

We recommend updating Sensu frequently to stay in sync with the latest features and fxes.
See the
upgrade guide to upgrade to the latest version.

Sensu supports the latest versions of offcial distributions, including packages, binary-only
distributions, and Docker images.
To learn more about Sensu support and licensing, see the getting
started guide.

version release date status end of support date

5.8.0 (docs) Pre-release

5.7.0 (docs) May 9, 2019 Supported

5.6.0 (docs) April 30, 2019 Supported

5.5.1 (docs) April 17, 2019 Supported

5.5.0 (docs) April 4, 2019 Supported

5.4.0 (docs) March 27, 2019 Supported

5.3.0 (docs) March 11, 2019 Supported

5.2.1 (docs) February 11, 2019 Not recommended

5.2.0 (docs) February 7, 2019 Not recommended

5.1.1 (docs) January 24, 2019 Not recommended

5.1.0 (docs) December 19,
2018

Not recommended

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/5.0/installation/enterprise
https://docs.sensu.io/sensu-go/5.0/installation/enterprise
https://docs.sensu.io/sensu-go/5.8
https://docs.sensu.io/sensu-go/5.7
https://docs.sensu.io/sensu-go/5.7/release-notes/#5-7-0-release-notes
https://docs.sensu.io/sensu-go/5.6
https://docs.sensu.io/sensu-go/5.6/release-notes/#5-6-0-release-notes
https://docs.sensu.io/sensu-go/5.5
https://docs.sensu.io/sensu-go/5.5/release-notes/#5-5-1-release-notes
https://docs.sensu.io/sensu-go/5.5
https://docs.sensu.io/sensu-go/5.5/release-notes/#5-5-0-release-notes
https://docs.sensu.io/sensu-go/5.4
https://docs.sensu.io/sensu-go/5.4/release-notes/#5-4-0-release-notes
https://docs.sensu.io/sensu-go/5.3
https://docs.sensu.io/sensu-go/5.3/release-notes/#5-3-0-release-notes
https://docs.sensu.io/sensu-go/5.2
https://docs.sensu.io/sensu-go/5.2/release-notes/#5-2-1-release-notes
https://docs.sensu.io/sensu-go/5.2
https://docs.sensu.io/sensu-go/5.2/release-notes/#5-2-0-release-notes
https://docs.sensu.io/sensu-go/5.1
https://docs.sensu.io/sensu-go/5.1/release-notes/#5-1-1-release-notes
https://docs.sensu.io/sensu-go/5.1
https://docs.sensu.io/sensu-go/5.1/release-notes/#5-1-0-release-notes
https://docs.sensu.io/sensu-go/5.1/release-notes/#5-1-0-release-notes
https://docs.sensu.io/sensu-go/5.7/installation/versions/
https://docs.sensu.io/

5.0.1 (docs) December 12, 2018 Not recommended June 3, 2019

5.0.0 (docs) December 5, 2018 Not recommended June 3, 2019

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://docs.sensu.io/sensu-go/5.0
https://docs.sensu.io/sensu-go/5.0
https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Guides

Aggregate-Metrics-Statsd

Clustering

Create-Read-Only-User

Enrich-Events-With-Hooks

Extract-Metrics-With-Checks

Infux-Db-Metric-Handler

Install-Check-Executables-With-Assets

Monitor-External-Resources

Monitor-Server-Resources

Plan-Maintenance

Reduce-Alert-Fatigue

Securing-Sensu

Send-Slack-Alerts

Systemd-Logs

Troubleshooting

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

How to aggregate metrics with the Sensu
StatsD listener

What is StatsD?

StatsD, originating from the daemon written by Etsy , is a daemon, tool,
and protocol that can be used
to send, collect, and aggregate custom metrics.
Services that implement StatsD typically expose UDP
port 8125 to receive metrics
according to the line protocol <metricname>:<value>|<type> .

Why use StatsD?

StatsD allows you to measure anything and everything. You can monitor
application performance by
collecting custom metrics in your code and sending
them to a StatsD server or you can monitor
system levels of CPU, I/O, network
etc. with collection daemons. The metrics that StatsD aggregates
can be fed to
multiple different backends to store or visualize the data.

How does Sensu implement StatsD?

Sensu implements a StatsD listener on its agents. Each sensu-agent
listens on the default port
8125 for UDP messages which follow the StatsD line
protocol. StatsD aggregates the metrics, and
Sensu translates them to Sensu
metrics and events to be passed to the event pipeline. The listener is
confgurable (see Confguring the StatsD listener)
and can be accessed with the netcat utility
command:

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://github.com/etsy/statsd/
https://docs.sensu.io/sensu-go/5.7/guides/aggregate-metrics-statsd/
https://docs.sensu.io/

--statsd-disable disables the statsd listener and metrics

server

--statsd-event-handlers stringSlice comma-delimited list of event handlers for

statsd metrics

--statsd-fush-interval int number of seconds between statsd fush

(default 10)

--statsd-metrics-host string address used for the statsd metrics server

(default "127.0.0.1")

--statsd-metrics-port int port used for the statsd metrics server

(default 8125)

sensu-agent start --statsd-event-handlers infux-db --statsd-fush-interval 1 --

statsd-metrics-host "123.4.5.6" --statsd-metrics-port 8125

Metrics received through the StatsD listener are not stored in etcd, so
it is important to confgure an
event handler(s).

NOTE: On Windows machines running Sensu, the StatsD UDP port is not supported,
rather
the TCP port is exposed.

Confguring the StatsD listener

The Sensu StatsD Server is confgured at the start-up of a sensu-agent . The
fags below allow you to
confgure the event handlers, fush interval, address,
and port:

For example:

Next steps

Now that you know how to feed StatsD metrics into Sensu, check out the following
resources to learn
how to handle those metrics:

Read the handlers reference for in-depth documentation on handlers.

Read the InfuxDB handler guide for instructions on Sensu’s built-in
metric handler.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

How to run a Sensu cluster

What is a Sensu cluster?

Why use clustering?

Confguring a cluster

Adding sensu agents to the cluster

Cluster health

Managing cluster members

Security

Client-to-server transport security with HTTPS

Client-to-server authentication with HTTPS client certifcates

Peer communication authentication with HTTPS client certifcates

Sensu agent with HTTPS

Using an external etcd cluster

Troubleshooting

What is a Sensu cluster?

A Sensu cluster is a group of at least three sensu-backend nodes, each connected to a shared etcd
cluster, using Sensu’s embedded etcd or an external etcd cluster. Creating a Sensu cluster ultimately
confgures an etcd cluster.

Why use clustering?

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://coreos.com/etcd/docs/latest/v2/admin_guide.html#optimal-cluster-size
https://coreos.com/etcd/docs/latest/v2/clustering.html
https://docs.sensu.io/sensu-go/5.7/guides/clustering/
https://docs.sensu.io/

Clustering is important to make Sensu more highly available, reliable, and durable. It will help you
cope with the loss of a backend node, prevent data loss, and distribute the network load of agents.

NOTE: We recommend using a load balancer to evenly distribute agent connections
across the cluster.

Confguring a cluster

The sensu-backend arguments for its store mirror the etcd confguration fags, however the Sensu
fags are prefxed with etcd . For more detailed descriptions of the different arguments, you can
refer to the etcd docs or the Sensu backend reference .

You can confgure a Sensu cluster in a couple different ways (we’ll show you a few below) but it’s
recommended to adhere to some etcd cluster guidelines as well.

The recommended etcd cluster size is 3, 5 or 7, which is decided by the fault
tolerance requirement. A 7-member cluster can provide enough fault tolerance in
most cases. While a larger cluster provides better fault tolerance, the write
performance reduces since data needs to be replicated to more machines. It is
recommended to have an odd number of members in a cluster. Having an odd
cluster size doesn’t change the number needed for majority, but you gain a higher
tolerance for failure by adding the extra member (Core OS).

We also recommend using stable platforms to support your etcd instances (see etcd’s supported
platforms).

Docker

If you’d prefer to stand up your Sensu cluster within Docker containers, check out the Sensu Go
docker confguration. This confguration defnes three sensu-backend containers and three sensu-
agent containers.

Traditional computer instance

NOTE: The remainder of this guide uses on disk confguration. If you are using an
ephemeral computer instance, you can use sensu-backend start --help to see examples
of etcd command line fags. The confguration fle entries below translate to sensu-

backend fags.

https://coreos.com/etcd/docs/latest/v2/configuration.html
https://coreos.com/etcd/docs/latest/
https://coreos.com/etcd/docs/latest/op-guide/supported-platform.html
https://coreos.com/etcd/docs/latest/op-guide/supported-platform.html
https://github.com/sensu/sensu-go/blob/master/docker-compose.yaml

##

store confguration for backend-1/10.0.0.1

##

 etcd-advertise-client-urls: "http://10.0.0.1:2379"

etcd-listen-client-urls: "http://10.0.0.1:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.1:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-1"

##

store confguration for backend-2/10.0.0.2

##

 etcd-advertise-client-urls: "http://10.0.0.2:2379"

etcd-listen-client-urls: "http://10.0.0.2:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.2:2380"

Sensu backend confguration

Below are example confguration snippets from /etc/sensu/backend.yml using a three node
cluster. The nodes are named backend-1 , backend-2 and backend-3 with IP addresses
10.0.0.1 , 10.0.0.2 and 10.0.0.3 , respectively.

NOTE: This backend confguration assumes you have set up and installed the sensu-
backend on all the nodes used in your cluster. You can use our installation and
confguration guide guide if you have not done so.

backend-1

backend-2

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-2"

##

store confguration for backend-3/10.0.0.3

##

 etcd-advertise-client-urls: "http://10.0.0.3:2379"

etcd-listen-client-urls: "http://10.0.0.3:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.3:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-3"

sudo systemctl start sensu-backend

##

backend-url confguration for all agents connecting to cluster over ws

##

backend-url:

backend-3

Once each node has the confguration described above, start each sensu-backend:

Adding sensu agents to the cluster

Each Sensu agent should have the following entries in /etc/sensu/agent.yml to ensure they are
aware of all cluster members. This allows the agent to reconnect to a working backend in the
scenrio where the one it is currently connected to goes into an unhealthy state.

 - "ws://10.0.0.1:8081"

 - "ws://10.0.0.2:8081"

 - "ws://10.0.0.3:8081"

sensuctl cluster health

 ID Name Error Healthy

────────────────── ───────────

─── ─────────

a32e8f613b529ad4 backend-1 true

c3d9f4b8d0dd1ac9 backend-2 dial tcp 10.0.0.2:2379: connect: connection refused false

c8f63ae435a5e6bf backend-3 true

sensuctl cluster member-add backend-4 https://10.0.0.4:2380

added member 2f7ae42c315f8c2d to cluster

You should now have a highly available Sensu cluster! You can verify its health and try other cluster
management commands using sensuctl.

Sensuctl

Sensuctl has several commands to help you manage and monitor your cluster. See
sensuctl cluster -h for additional help usage.

Cluster health

Get cluster health status and etcd alarm information.

Add a cluster member

Add a new member node to an existing cluster.

ETCD_NAME="backend-4"

ETCD_INITIAL_CLUSTER="backend-4=https://10.0.0.4:2380,backend-

1=https://10.0.0.1:2380,backend-2=https://10.0.0.2:2380,backend-

3=https://10.0.0.3:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

sensuctl cluster member-list

 ID Name Peer URLs Client URLs

────────────────── ─────────── ───────────────────────── ─────────────────────────

a32e8f613b529ad4 backend-1 https://10.0.0.1:2380 https://10.0.0.1:2379

c3d9f4b8d0dd1ac9 backend-2 https://10.0.0.2:2380 https://10.0.0.2:2379

c8f63ae435a5e6bf backend-3 https://10.0.0.3:2380 https://10.0.0.3:2379

2f7ae42c315f8c2d backend-4 https://10.0.0.4:2380 https://10.0.0.4:2379

sensuctl cluster member-remove 2f7ae42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

sensuctl cluster member-update c8f63ae435a5e6bf https://10.0.0.4:2380

List cluster members

List the ID, name, peer urls, and client urls of all nodes in a cluster.

Remove a cluster member

Remove a faulty or decommissioned member node from a cluster.

Update a cluster member

Update the peer URLs of a member in a cluster.

Updated member with ID c8f63ae435a5e6bf in cluster

echo '{"CN":"CA","key":{"algo":"rsa","size":2048}}' | cfssl gencert -initca - |

cfssljson -bare ca -

echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key

encipherment","server auth","client auth"]}}}' > ca-confg.json

export ADDRESS=10.0.0.1,backend-1

export NAME=backend-1

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS"

-profle=peer - | cfssljson -bare $NAME

export ADDRESS=10.0.0.2,backend-2

export NAME=backend-2

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS"

-profle=peer - | cfssljson -bare $NAME

export ADDRESS=10.0.0.3,backend-3

Security

Creating self-signed certifcates

We will use the cfssl tool to generate our self-signed certifcates.

The frst step is to create a Certifcate Authority (CA) . In order to keep things simple, we will
generate all our clients and peer certifcates using this CA, but you might eventually want to create
distinct CA.

Then, using that CA, we can generate certifcates and keys for each peer (backend server) by
specifying their Common Name (CN) and their hosts. A *.pem , *.csr and *.pem will be created
for each backend.

https://github.com/cloudflare/cfssl

export NAME=backend-3

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS"

-profle=peer - | cfssljson -bare $NAME

export NAME=client

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="" -

profle=client - | cfssljson -bare $NAME

backend-1-key.pem

backend-1.csr

backend-1.pem

backend-2-key.pem

backend-2.csr

backend-2.pem

backend-3-key.pem

backend-3.csr

backend-3.pem

ca-confg.json

ca-key.pem

ca.csr

ca.pem

client-key.pem

client.csr

client.pem

We will also create generate a client certifcate that can be used by clients to connect to the etcd
client URL. This time, we don’t need to specify an address but simply a Common Name (CN) (here
client). The fles client-key.pem , client.csr and client.pem will be created.

See etcd’s guide to generating self signed certifcates for detailed instructions.

Once done, you should have the following fles created. The *.csr fles will not be used in this guide.

https://coreos.com/os/docs/latest/generate-self-signed-certificates.html

##

etcd peer ssl confguration for backend-1/10.0.0.1

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-1.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-1-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

##

etcd peer ssl confguration for backend-2/10.0.0.2

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-2.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-2-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

##

etcd peer ssl confguration for backend-3/10.0.0.3

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-3-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

curl --cacert /usr/local/share/ca-certifcates/sensu/ca.pem \

https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar

Client-to-server transport security with HTTPS

Below are example confguration snippets from /etc/sensu/backend.yml on three Sensu
backends named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 ,
10.0.0.2 and 10.0.0.3 respectively.
This confguration assumes that your client certifcates are in
/etc/sensu/certs/ and your CA certifcate is in /usr/local/share/ca-certifcates/sensu/ .

Validating with curl:

##

etcd peer ssl confguration for backend-1/10.0.0.1

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-1.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-1-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-client-cert-auth: true

##

etcd peer ssl confguration for backend-2/10.0.0.2

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-2.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-2-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-client-cert-auth: true

##

etcd peer ssl confguration for backend-3/10.0.0.3

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-3-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-client-cert-auth: true

curl --cacert /usr/local/share/ca-certifcates/sensu/ca.pem \

--cert /etc/sensu/certs/client.pem \

Client-to-server authentication with HTTPS client certifcates

Below are example confguration snippets from /etc/sensu/backend.yml on three Sensu
backends named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 ,
10.0.0.2 and 10.0.0.3 respectively.
This confguration assumes your client certifcates are in
/etc/sensu/certs/ and your CA certifcate is in /usr/local/share/ca-certifcates/sensu/ .

Validating with curl, with a different certifcate and key:

--key /etc/sensu/certs/client-key.pem \

-L https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar

##

store confguration for backend-1/10.0.0.1

##

etcd-listen-client-urls: "https://10.0.0.1:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.1:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-1"

##

etcd peer ssl confguration for backend-1/10.0.0.1

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-1.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-1-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

Peer communication authentication with HTTPS client
certifcates

Below are example confguration snippets from /etc/sensu/backend.yml on three Sensu
backends named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 ,
10.0.0.2 and 10.0.0.3 respectively.

NOTE: If you ran through the frst part of the guide, you will need to update the store
confguration for all backends to use http s instead of http.

backend-1

##

store confguration for backend-2/10.0.0.2

##

etcd-listen-client-urls: "https://10.0.0.2:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.2:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-2"

##

etcd peer ssl confguration for backend-2/10.0.0.2

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-2.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-2-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

##

store confguration for backend-3/10.0.0.3

##

etcd-listen-client-urls: "https://10.0.0.3:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.3:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-3"

backend-2

backend-3

##

etcd peer ssl confguration for backend-3/10.0.0.3

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-3-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

##

backend-url confguration for all agents connecting to cluster over wss

##

backend-url:

 - "wss://10.0.0.1:8081"

 - "wss://10.0.0.2:8081"

 - "wss://10.0.0.3:8081"

etcd \

--listen-client-urls "https://10.0.0.1:2379" \

Sensu agent with HTTPS

Below is a sample confguration for an agent that would connect to the cluster using wss from
/etc/sensu/agent.yml .

Using an external etcd cluster

To stand up an external etcd cluster, you can follow etcd’s clustering guide using the same store
confguration.

In this example, we will enable client-to-server and peer communication authentication using self-
signed TLS certifcates. Below is how you would start etcd for backend-1 from our three node
confguration example above.

https://coreos.com/etcd/docs/latest/op-guide/clustering.html

--advertise-client-urls "https://10.0.0.1:2379" \

--listen-peer-urls "https://10.0.0.1:2380" \

--initial-cluster "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380" \

--initial-advertise-peer-urls "https://10.0.0.1:2380" \

--initial-cluster-state "new" \

--name "backend-1" \

--trusted-ca-fle=./ca.pem \

--cert-fle=./backend-1.pem \

--key-fle=./backend-1-key.pem \

--client-cert-auth \

--peer-trusted-ca-fle=./ca.pem \

--peer-cert-fle=./backend-1.pem \

--peer-key-fle=./backend-1-key.pem \

--peer-client-cert-auth

sensu-backend start \

--etcd-trusted-ca-fle=./ca.pem \

--etcd-cert-fle=./client.pem \

--etcd-key-fle=./client-key.pem \

--etcd-advertise-client-

urls=https://10.0.0.1:2379,https://10.0.0.2:2379,https://10.0.0.3:2379 \

--no-embed-etcd

In order to inform Sensu that you’d like to use this external etcd data source, add the
sensu-backend fag --no-embed-etcd to the original confguration, along with the path to a client

certifcate created using our CA.

Troubleshooting

Failures modes

See the etcd failure modes documentation for more information.

https://coreos.com/etcd/docs/latest/op-guide/failures.html

Disaster recovery

See the etcd recovery guide for more information.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://coreos.com/etcd/docs/latest/op-guide/recovery.html
https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

sensuctl user create alice --password='password' --groups=ops

How to create a read-only user with RBAC

Sensu role-based access control (RBAC) helps different teams and projects share a Sensu instance.
RBAC allows management and access of users and resources based on namespaces, groups,
roles, and bindings.

By default, Sensu includes a default namespace and an admin user with full permissions to
create, modify, and delete resources within Sensu, including RBAC resources like users and roles.
This
guide requires a running Sensu backend and a sensuctl instance confgured to connect to the
backend as the default admin user.

Why use RBAC?

RBAC allows you to exercise fne-grained control over how Sensu users interact
with Sensu resources.
Using RBAC rules, you can easily achieve multitenancy
so different projects and teams can share a
Sensu instance.

How to create a read-only user

In this section, you’ll create a user and assign them read-only access to resources within the
default namespace using a role and a role binding.

1. Create a user with the username alice and assign them to the group ops :

2. Create a read-only role with get and list permissions for all resources (*) within the
default namespace:

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/create-read-only-user/
https://docs.sensu.io/

sensuctl role create read-only --verb=get,list --resource=* --

namespace=default

sensuctl role-binding create ops-read-only --role=read-only --group=ops

sensuctl user create bob --password='password' --groups=ops

sensuctl cluster-role create global-event-reader --verb=get,list --

resource=events

sensuctl cluster-role-binding create ops-event-reader --cluster-

role=global-event-reader --group=ops

3. Create an ops-read-only role binding to assign the read-only role to the ops group:

You can also use role bindings to tie roles directly to users using the --user fag.

All users in the ops group now have read-only access to all resources within the default namespace.
You can use the sensuctl user , sensuctl role , and sensuctl role-binding commands to
manage your RBAC confguration.

How to create a cluster-wide event-reader user

Now let’s say you want to create a user that has read-only access to events across all namespaces.
Since you want this role to have cluster-wide permissions, you’ll need to create a cluster role and a
cluster role binding.

1. Create a user with the username bob and assign them to the group ops :

2. Create a global-event-reader cluster role with get and list permissions for events
across all namespaces:

3. Create an ops-event-reader cluster role binding to assign the global-event-reader role
to the ops group:

All users in the ops group now have read-only access to events across all namespaces.

Next steps

You now know how to create a user, create a role, and create a role binding to assign a role to a user.
From this point, here are some recommended resources:

Read the RBAC reference for in-depth documentation on role-based access control,
examples, and information about cluster-wide permissions.

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Made with #monitoringlove by Sensu, Inc. © 2013-2019

https://twitter.com/hashtag/monitoringlove

How to augment event data using check
hooks

What are check hooks?

Check hooks are commands run by the Sensu agent in response to the result of
check command
execution. The Sensu agent executes the appropriate
confgured hook, depending on the exit status
code (e.g., 1).

Why use check hooks?

Check hooks allow Sensu users to automate data collection routinely performed by
operators
investigating monitoring alerts, freeing precious operator time! While
check hooks can be used for
rudimentary auto-remediation tasks, they are intended
for enrichment of monitoring event data.

Using check hooks to gather context

The purpose of this guide is to help you put in place a check hook which captures
the process tree in
the event that an nginx_process check returns a status of 2 (critical,
not running).

Creating the hook

The frst step is to create a new hook that runs a specifc command to
capture the process tree. We
can set an execution timeout of 10 seconds
for this command.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/enrich-events-with-hooks/
https://docs.sensu.io/

sensuctl hook create process_tree \

--command 'ps aux' \

--timeout 10

sensuctl check set-hooks nginx_process \

--type critical \

--hooks process_tree

sensuctl event info i-424242 nginx_process --format json

{

 [...]

 "check": {

 [...]

 "hooks": [

 {

 "confg": {

 "name": "process_tree",

 "command": "ps aux",

 "timeout": 10,

 "namespace": "default"

Assigning the hook to a check

Now that the process_tree hook has been created, it can be assigned to a
check. Here we apply our
hook to an already existing nginx_process check.
By setting the type to critical , we ensure that
whenever the check command returns a critical status, Sensu executes the process_tree hook
and adds the output to the resulting event data.

Validating the check hook

You can verify the proper behavior of the check hook against a specifc event by
using sensuctl . It
might take a few moments, once the check hook is assigned,
for the check to be scheduled on the
entity and the result sent back to the Sensu
backend. The check hook command result is available in
the hooks array,
within the check scope.

 },

 "duration": 0.008713605,

 "executed": 1521724622,

 "output": "",

 "status": 0

 }

],

 [...]

 }

}

sensuctl event info i-424242 nginx_process --format json | jq -r

'.check.hooks[0].output'

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.3 46164 6704 ? Ss Nov17 0:11

/usr/lib/systemd/systemd --switched-root --system --deserialize 20

root 2 0.0 0.0 0 0 ? S Nov17 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S Nov17 0:01 [ksoftirqd/0]

root 7 0.0 0.0 0 0 ? S Nov17 0:01 [migration/0]

root 8 0.0 0.0 0 0 ? S Nov17 0:00 [rcu_bh]

root 9 0.0 0.0 0 0 ? S Nov17 0:34 [rcu_sched]

Having confrmed that the hook is attached to our check, we can stop
Nginx and observe the check
hook in action on the next check
execution. Here we use sensuctl to query event info and send the
response to jq so we can isolate the check hook output:

Note that the above output, although truncated in the interest of
brevity, refects the output of the
ps aux command specifed in the
check hook we created. Now when we are alerted that Nginx is

not
running, we can review the check hook output to confrm this was the
case, without ever fring up
an SSH session to investigate!

Next steps

You now know how to run data collection tasks using check hooks. From this point,
here are some
recommended resources:

 Read the hooks reference for in-depth documentation on hooks.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

sensuctl check set-command collect-metrics collect_metrics.sh

sensuctl check set-output-metric-format collect-metrics graphite_plaintext

sensuctl check set-output-metric-handlers collect-metrics infux-db

How to collect and extract metrics using
Sensu checks

What are Sensu checks?

In short, Sensu checks are commands (or scripts), executed by the Sensu
agent, that output data and
produce an exit code to indicate a state. If you are
unfamiliar with checks, or would like to learn how
to confgure one frst,
take a look through the check reference doc and guide before you
continue.

Extracting metrics from check output

In order to extract metrics from check output, you’ll need to do the following:

1. Confgure the check command such that the command execution outputs
metrics in one of
the supported output metric formats.

2. Confgure the check output_metric_format to one of the
supported output metric formats.

3. Confgure the check output_metric_handlers (optional) to a Sensu handler
that is equipped
to handle Sensu metrics (see handlers or
infux-db handler to learn more).

You can confgure the check with these felds at creation, or use the commands
below assuming you
have a check named collect-metrics . In this example,
we’ll be using graphite_plaintext format
and sending the metrics to a handler
named infux-db .

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/extract-metrics-with-checks/
https://docs.sensu.io/

Supported output metric formats

The output metric formats that Sensu currently supports for check output metric
extraction are
nagios, infuxdb, graphite, and opentsdb.

PING ok - Packet loss = 0%, RTA = 0.80 ms |

percent_packet_loss=0, rta=0.80

nagios

output_metric_format nagios_perfdata

documentation Nagios Performance Data

example

local.random.diceroll 4 123456789

graphite

output_metric_format graphite_plaintext

documentation Graphite Plaintext Protocol

example

weather,location=us-midwest temperature=82

1465839830100400200

infuxdb

output_metric_format infuxdb_line

documentation InfuxDB Line Protocol

example

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/influxdb/v1.4/write_protocols/line_protocol_tutorial/#measurement

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "check": {

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "command": "collect_metrics.sh",

 "output": "cpu.idle_percentage 61 1525462242\nmem.sys 104448 1525462242",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

]

 },

sys.cpu.user 1356998400 42.5 host=webserver01 cpu=0

opentsdb

output_metric_format opentsdb_line

documentation OpenTSDB Data Specifcation

example

Validating the metrics

If the check output is formatted correctly according to its output_metric_format ,
the metrics will
be extracted in Sensu Metric Format, and saved within the
event. You should expect to see logged
errors if Sensu is unable to parse
the check output. You can validate that metrics have been extracted
from your
check through your handler, or through the resulting event. The example check
we used
would yield an event similar to the one below:

http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "cpu.idle_percentage",

 "value": 61,

 "timestamp": 1525462242,

 "tags": []

 },

 {

 "name": "mem.sys",

 "value": 104448,

 "timestamp": 1525462242,

 "tags": []

 }

]

 }

 }

}

Next steps

Now you know how to extract metrics from check output! Check out the below
resources for some
further reading:

Read the checks reference for in-depth documentation on checks.

Read the checks guide for directions on how to schedule checks.

Read the handlers reference for in-depth documentation on handlers.

Read the infux-db handler guide for instructions on Sensu’s built-in
metric handler.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

sensuctl asset create sensu-infuxdb-handler --url "https://github.com/sensu/sensu-i

infuxdb-handler_3.1.2_linux_amd64.tar.gz" --sha512

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9

How to populate InfuxDB metrics using
handlers

What are Sensu handlers?

Sensu event handlers are actions executed by the Sensu server on events.
In this example, we’ll use a
handler to populate a time series database. If
you’re not totally comfortable with handlers yet, check
out the in-depth
guide on handlers frst!

Using a handler to populate InfuxDB

The purpose of this guide is to help you populate Sensu metrics into the time
series database
InfuxDB. Metrics can be collected from check output
or from the Sensu StatsD Server.

Registering the asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
In this guide, we’ll
use the Sensu InfuxDB handler asset to power an infux-db handler.

You can use the following sensuctl example to register the Sensu InfuxDB handler asset for Linux
AMD64, or you can download the latest asset defnition for your platform from Bonsai and register
the asset using sensuctl create --fle flename.yml .

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://github.com/influxdata/influxdb
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://docs.sensu.io/sensu-go/5.7/guides/influx-db-metric-handler/
https://docs.sensu.io/

Created

sensuctl handler create infux-db \

--type pipe \

--command "sensu-infuxdb-handler -d sensu" \

--env-vars "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086,

INFLUXDB_USER=sensu, INFLUXDB_PASS=password" \

--runtime-assets sensu-infuxdb-handler

Created

sensuctl check set-output-metric-handlers collect-metrics infux-db

You should see a confrmation message from sensuctl.

Creating the handler

Now we’ll use sensuctl to create a handler called infux-db that pipes event data to InfuxDB using
the sensu-infuxdb-handler asset.
Edit the command below to include your database name,
address, username, and password.
For more information about the Sensu InfuxDB handler, see the
asset page in Bonsai.

You should see a confrmation message from sensuctl.

Assigning the handler to an event

With the infux-db handler now created, it can be assigned to a check for
check output metric
extraction. In this example, the check name is
 collect-metrics :

The handler can also be assigned to the Sensu StatsD listener at agent startup to pass
all StatsD
metrics into InfuxDB:

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

sensu-agent start --statsd-event-handlers infux-db

Validating the handler

It might take a few moments once the handler is assigned to the check or StatsD
server, for Sensu to
receive the metrics, but once an event is handled, you
should start to see your InfuxDB being
populated! Otherwise, you can verify the
proper behavior of this handler by using sensu-backend logs.
See the troubleshooting guide for log locations by platform.

Whenever an event is being handled, a log entry is added with the message
"handler":"infux-db","level":"debug","msg":"sending event to handler" ,
followed by a

second one with the message
"msg":"pipelined executed event pipe
handler","output":"","status":0 .

Next steps

You now know how to apply a handler to metrics and take action on events. From
this point, here are
some recommended resources:

Read the handlers reference for in-depth documentation on handlers.

Read the StatsD listener guide for instructions on how to aggregate
StatsD metrics in Sensu.

Read the check output metric extraction guide to learn how to collect
and extract metrics
using Sensu checks.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

type: Asset

api_version: core/v2

metadata:

 name: sensu-pagerduty-handler

 namespace: default

 labels: {}

 annotations: {}

spec:

How to install plugins using assets

1. Download an asset defnition from Bonsai

2. Register the asset with Sensu

3. Create a monitoring workfow

Next steps

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
You can use
assets to provide the plugins, libraries, and runtimes you need to power your monitoring workfows.
See the asset reference for more information about assets.

1. Download an asset defnition from Bonsai

You can discover, download, and share assets using Bonsai, the Sensu asset index.
To use an asset,
select the Download button on the asset page in Bonsai to download the asset defnition for your
Sensu backend platform and architecture.
Asset defnitions tell Sensu how to download and verify the
asset when required by a check, flter, mutator, or handler.

For example, here’s the asset defnition for version 1.1.0 of the Sensu PagerDuty handler asset for
Linux AMD64.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://bonsai.sensu.io/
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://docs.sensu.io/sensu-go/5.7/guides/install-check-executables-with-assets/
https://docs.sensu.io/

 url: https://github.com/sensu/sensu-pagerduty-handler/releases/download/1.1.0/sen

 sha512:

e93ec4465af5a2057664e8c3cd68e9352457b81315b97578eaae5e21f0cf7419d4fc36feb0155eeb0dd

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

sensuctl create --fle sensu-sensu-pagerduty-handler-1.1.0-linux-amd64.yml

sensuctl asset list

{

 "api_version": "core/v2",

Enterprise-only assets (like the ServiceNow and Jira event handlers) require an active enterprise
license. For more information about enterprise-only features and to active your license, see the
getting started guide.

2. Register the asset with Sensu

Once you’ve downloaded the asset defnition, you can register the asset with Sensu using sensuctl.

You can use sensuctl to verify that the asset is registered and ready to use.

3. Create a workfow

Now we can use assets in a monitoring workfow.
Depending on the asset, you may want to create
Sensu checks, flters, mutators, and handlers.
The asset details in Bonsai are the best resource for
information about asset capabilities and confguration.

For example, to use the Sensu PagerDuty handler asset, create a pagerduty handler that includes
your PagerDuty service API key in place of SECRET and sensu-pagerduty-handler as a runtime
asset.

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

 "type": "Handler",

 "metadata": {

 "namespace": "default",

 "name": "pagerduty"

 },

 "spec": {

 "type": "pipe",

 "env_vars": [

 "PAGERDUTY_TOKEN=SECRET"

],

 "runtime_assets": ["sensu-pagerduty-handler"],

 "timeout": 10,

 "flters": [

 "is_incident"

]

 }

}

sensuctl create --fle pagerduty-handler.json

Save the defnition to a fle (for example: pagerduty-handler.json), and add to Sensu using
sensuctl.

Now that Sensu can create incidents in PagerDuty, we can automate this workfow by adding the
pagerduty handler to our Sensu service checks.
To get started with checks, see the guide to

monitoring server resources .

Next steps

Learn more about assets

Read the asset specifcation

Share your assets on Bonsai

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

sudo curl https://raw.githubusercontent.com/sensu/sensu-

go/5.1.0/examples/checks/http_check.sh \

How to monitor external resources with
proxy entities

Using a proxy entity to monitor a website

Using proxy requests to monitor a group of websites

Proxy entities allow Sensu to monitor external resources
on systems or devices where a Sensu agent
cannot be installed, like a
network switch or a website.
You can create proxy entities using sensuctl, the
Sensu API, or the proxy_entity_name check attribute. When executing checks that include a
proxy_entity_name , Sensu agents report the resulting event under the proxy entity instead of the

agent entity.

This guide requires a running Sensu backend, a running Sensu agent, and a sensuctl instance
confgured to connect to the backend as a user with read and create permissions for entities, checks,
and events.

Using a proxy entity to monitor a website

In this section, we’ll monitor the status of sensu.io by confguring a check with a proxy entity name
so that Sensu creates an entity representing the site and reports the status of the site under this
entity.

Installing an HTTP check script

First, we’ll install a bash script, named http_check.sh , to perform an HTTP
check using curl.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://sensu.io/
https://raw.githubusercontent.com/sensu/sensu-go/dccfeb9093c21e45fd6505d3b32da354bdf8a136/examples/checks/http_check.sh
https://docs.sensu.io/sensu-go/5.7/guides/monitor-external-resources/
https://docs.sensu.io/

-o /usr/local/bin/http_check.sh && \

sudo chmod +x /usr/local/bin/http_check.sh

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-http",

 "namespace": "default"

 },

 "spec": {

 "command": "http_check.sh https://sensu.io",

 "interval": 60,

 "proxy_entity_name": "sensu-site",

 "publish": true,

 "subscriptions": [

 "proxy"

]

 }

}

sensuctl create --fle check.json

PRO TIP: While this command may be appropriate when running a few agents, you should
consider
using Sensu assets or a confguration management tool to provide
runtime
dependencies.

Creating the check

Now that our script is installed, we’ll create a check named
 check-http , which runs the command
http_check.sh https://sensu.io , at an
interval of 60 seconds, for all entities subscribed to the
proxy
subscription, using the sensu-site proxy entity name.

Create a fle called check.json and add the following check defnition.

Now we can use sensuctl to add this check to Sensu.

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets Hooks

Publish? Stdin? Metric Format Metric Handlers

──────────── ──────────────────────────────── ────────── ────── ───────── ─────

─────────────── ────────── ──────── ─────── ────────── ──────── ───────────────

─────────────────

 check-http http_check.sh https://sensu.io 60 0 0 proxy true false

subscriptions:

 - "proxy"

sudo service sensu-agent restart

sensuctl entity list

 ID Class OS Subscriptions Last Seen

────────────── ─────── ─────── ───────────────────────────

───────────────────────────────

sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 21:50:03 +0000 UTC

sensu-site proxy entity:sensu-site N/A

Adding the subscription

To run the check, we’ll need a Sensu agent with the subscription proxy .
After installing an agent,
open /etc/sensu/agent.yml
and add the proxy subscription so the subscription confguration
looks like:

Then restart the agent.

Validating the check

Now we can use sensuctl to see that Sensu has created the proxy entity sensu-site .

sensuctl event info sensu-site check-http

=== sensu-site - check-http

Entity: sensu-site

Check: check-http

Output:

Status: 0

History: 0,0

Silenced: false

Timestamp: 2019-01-16 21:51:53 +0000 UTC

sudo curl https://raw.githubusercontent.com/sensu/sensu-

go/5.1.0/examples/checks/http_check.sh \

-o /usr/local/bin/http_check.sh && \

sudo chmod +x /usr/local/bin/http_check.sh

And that Sensu is now monitoring sensu-site using the check-http check.

NOTE: It might take a few moments for Sensu to execute the check and create the proxy
entity.

We can also see our new proxy entity in the Sensu dashboard.

Using proxy requests to monitor a group of websites

Now let’s say that, instead of monitoring just sensu.io, we want to monitor multiple sites, for
example: docs.sensu.io, packagecloud.io, and github.com.
In this section of the guide, we’ll use the
proxy_requests check attribute, along with entity labels and token substitution, to monitor three

sites using the same check.
Before we get started, go ahead and install the HTTP check script if you
haven’t already.

Installing an HTTP check script

If you haven’t already, install a bash script, named http_check.sh , to perform an HTTP
check using
curl.

https://raw.githubusercontent.com/sensu/sensu-go/dccfeb9093c21e45fd6505d3b32da354bdf8a136/examples/checks/http_check.sh

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://docs.sensu.io"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "packagecloud-site",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://packagecloud.io"

 }

 },

PRO TIP: While this command may be appropriate when running a few agents, you should
consider
using Sensu assets or a confguration management tool to provide
runtime
dependencies.

Creating proxy entities

Instead of creating a proxy entity using the proxy_entity_name check attribute, we’ll be using
sensuctl to create proxy entities to represent the three sites we want to monitor.
Our proxy entities
need the entity_class attribute set to proxy to mark them as proxy entities as well as a few
custom labels that we’ll use to identify them as a group and pass in individual URLs.

Create a fle called entities.json and add the following entity defnitions.

 "spec": {

 "entity_class": "proxy"

 }

}

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "github-site",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://github.com"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

sensuctl create --fle entities.json

sensuctl entity list

 ID Class OS Subscriptions Last Seen

 ─────────────────── ─────── ─────── ───────────────────────────

───────────────────────────────

 github-site proxy N/A

 packagecloud-site proxy N/A

 sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 23:05:03 +0000 UTC

 sensu-docs proxy N/A

PRO TIP: When creating proxy entities, you can add whatever custom labels make sense
for your environment. For example, when monitoring a group of routers, you may want to
add ip_address labels.

Now we can use sensuctl to add these proxy entities to Sensu.

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-http-proxy-requests",

 "namespace": "default"

 },

 "spec": {

 "command": "http_check.sh {{ .labels.url }}",

 "interval": 60,

 "subscriptions": [

 "proxy"

],

 "publish": true,

 "proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

],

 "splay": true,

 "splay_coverage": 90

 }

 }

}

Creating a reusable HTTP check

Now that we have our three proxy entities set up, each with a proxy_type and url label, we can
use proxy requests and token substitution to create a single check that monitors all three sites.

Create a fle called check-proxy-requests.json and add the following check defnition.

Our check-http-proxy-requests check uses the proxy_requests attribute to specify the
applicable entities.
In our case, we want to run the check-http-proxy-requests check on all entities
of entity class proxy and proxy type website .
To make sure that Sensu runs the check for all
applicable entities, we need to set the splay attribute to true with a splay coverage percentage
value of 90 .
This gives Sensu 90% of the check interval , 60 seconds in this case, to execute the
check for all applicable entities.
Since we’re using this check to monitor multiple sites, we can use
token substitution to apply the correct url in the check command .

sensuctl create --fle check-proxy-requests.json

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets

Hooks Publish? Stdin? Metric Format Metric Handlers

─────────────────────────── ───────────────────────────────── ────────── ──────

───────── ───── ─────────────── ────────── ──────── ─────── ────────── ────────

─────────────── ─────────────────

 check-http http_check.sh https://sensu.io 60 0 0 proxy true

false

 check-http-proxy-requests http_check.sh {{ .labels.url }} 60 0 0 proxy

true false true false

sensuctl event list

 Entity Check Output Status Silenced Timestamp

─────────────────── ─────────────────────────── ──────── ──────── ──────────

───────────────────────────────

github-site check-http-proxy-requests 0 false 2019-01-17 17:10:31 +0000 UTC

packagecloud-site check-http-proxy-requests 0 false 2019-01-17 17:10:34 +0000 UTC

sensu-centos keepalive 0 false 2019-01-17 17:10:34 +0000 UTC

sensu-docs check-http-proxy-requests 0 false 2019-01-17 17:06:59 +0000 UTC

Now we can use sensuctl to add this check to Sensu.

Validating the check

Before validating the check, make sure that you’ve added the proxy subscription to a Sensu agent
if you haven’t already.

Now we can use sensuctl to see that Sensu is monitoring docs.sensu.io, packagecloud.io, and
github.com using the check-http-proxy-requests .

Next steps

You now know how to run a proxy check to verify the status of a website, as
well as using proxy
requests to run a check on two different proxy entities based on label evaluation.
From this point, here
are some recommended resources:

Read the proxy checks reference for in-depth documentation on proxy checks.

Read the guide to providing runtime dependencies to checks with assets .

Read the guide to sending alerts to Slack with handlers.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

How to monitor server resources with
checks

What are Sensu checks?

Sensu checks are commands (or scripts), executed by the Sensu agent, that
output data and produce
an exit code to indicate a state. Sensu checks use the
same specifcation as Nagios, therefore, Nagios
check plugins may be
used with Sensu.

Why use a check?

You can use checks to monitor server resources, services, and application
health (for example: is
Nginx running?) as well as collect and analyze metrics (for example: how much disk space do I have
left?).

Using checks to monitor a service

The purpose of this guide is to help you monitor server resources, more
specifcally the CPU usage, by
confguring a check named check-cpu with a
subscription named system , in order to target all
entities subscribed
to the system subscription.
This guide requires a Sensu backend and at least one
Sensu agent running on Linux.

Registering assets

To power the check, we’ll use the Sensu CPU checks asset and the Sensu Ruby runtime asset.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://docs.sensu.io/sensu-go/5.7/guides/monitor-server-resources/
https://docs.sensu.io/

sensuctl asset create sensu-plugins-cpu-checks --url "https://github.com/sensu-plug

checks/releases/download/4.0.0/sensu-plugins-cpu-checks_4.0.0_centos_linux_amd64.ta

"518e7c17cf670393045bff4af318e1d35955bfde166e9ceec2b469109252f79043ed133241c4dc9650

sensuctl asset create sensu-ruby-runtime --url "https://github.com/sensu/sensu-ruby

runtime_0.0.5_centos_linux_amd64.tar.gz" --sha512

"1c9f0aff8f7f7dfcf07eb75f48c3b7ad6709f2bd68f2287b4bd07979e6fe12c2ab69d1ecf5d4b9b9ed

sensuctl asset list

 Name URL Hash

──────────────────────────

───

─────────

 sensu-plugins-cpu-checks //github.com/.../sensu-plugins-cpu-checks_4.0.0_centos_linux_amd64.tar.gz 518e7c1

 sensu-ruby-runtime //github.com/.../sensu-ruby-runtime_0.0.5_centos_linux_amd64.tar.gz 1c9f0af

Use the following sensuctl example to register the sensu-plugins-cpu-checks asset for CentOS,
or download the asset defnition for Debian or Alpine from Bonsai and register the asset using
sensuctl create --fle flename.yml .

Then use the following sensuctl example to register the sensu-ruby-runtime asset for CentOS, or
download the asset defnition for Debian or Alpine from Bonsai and register the asset using
sensuctl create --fle flename.yml .

You can use sensuctl to confrm that both the sensu-plugins-cpu-checks and
sensu-ruby-runtime assets are ready to use.

Creating the check

Now that the assets are registered, we’ll create a check named
 check-cpu , which runs the
command check-cpu.rb -w 75 -c 90 using the sensu-plugins-cpu-checks and
sensu-ruby-runtime assets, at an
interval of 60 seconds, for all entities subscribed to the system

subscription.
This checks generates a warning event (-w) when CPU usage reaches 75% and a critical
alert (-c) at 90%.

https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

sensuctl check create check-cpu \

--command 'check-cpu.rb -w 75 -c 90' \

--interval 60 \

--subscriptions system \

--runtime-assets sensu-plugins-cpu-checks,sensu-ruby-runtime

subscriptions:

 - system

sudo service sensu-agent restart

sensuctl event list

 Entity Check Output Status Silen

────────────── ───────────

───

──────── ────────── ───────────────────────────────

 sensu-centos check-cpu CheckCPU TOTAL OK: total=0.2 user=0.0 nice=0.0 system=0.2 idle=99.8 iowait=0.0 irq=0.0 s

16:42:28 +0000 UTC

Confguring the subscription

To run the check, we’ll need a Sensu agent with the subscription system .
After installing an agent,
open /etc/sensu/agent.yml
and add the system subscription so the subscription confguration
looks like:

Then restart the agent.

Validating the check

We can use sensuctl to see that Sensu is monitoring CPU usage using the check-cpu , returning an
OK status (0).
It might take a few moments, once the check is created,
for the check to be scheduled
on the entity and the event returned to Sensu backend.

Next steps

You now know how to run a simple check to monitor CPU usage. From this point,
here are some
recommended resources:

Read the checks reference for in-depth documentation on checks.

Read our guide on providing runtime dependencies to checks with assets .

Read our guide on monitoring external resources with proxy checks and entities .

Read our guide on sending alerts to Slack with handlers.

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring

Made with #monitoringlove by Sensu, Inc. © 2013-2019

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

How to plan maintenance windows using
silencing

What is Sensu silencing?

As check results are processed by a Sensu server, the server executes event
handlers to send alerts
to personnel or otherwise relay event data to
external services. Sensu’s built-in silencing, along with
the built-in
not_silenced flter, provides the means to suppress execution of event
handlers on an
ad hoc basis.

When to use silencing

Silencing is used to prevent handlers confgured with the not_silenced flter
from being triggered
based on the check name present in a check result or the
subscriptions associated with the entity
that published the check result. This
can be desirable in many scenarios, giving operators the ability to
quiet
incoming alerts while coordinating their response.

Sensu silencing entries make it possible to:

Silence all checks on a specifc entity

Silence a specifc check on a specifc entity

Silence all checks on entities with a specifc subscription

Silence a specifc check on entities with a specifc subscription

Silence a specifc check on every entity

Using silencing to plan maintenance

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/plan-maintenance/
https://docs.sensu.io/

sensuctl silenced create \

--subscription 'entity:i-424242' \

--check 'check-http' \

--begin '2018-03-16 01:00:00 -04:00' \

--expire 3600 \

--reason 'Server upgrade'

sensuctl silenced info 'entity:i-424242:check-http'

sensuctl event list

 Entity Check Output Status Silenced Timestamp

────────────── ───────── ───────── ──────────── ──────────

───────────────────────────────

The purpose of this guide is to help you plan a maintenance window, by creating
a silenced entry for a
specifc entity named i-424242 and its check named
check-http , in order to prevent alerts as you
restart or redeploy the
services associated with this entity.

Creating the silenced entry

The frst step is to create a silenced entry that will silence the check
 check-http on an entity
named i-424242 , for a planned maintenance window
that starts at 01:00, on Sunday, and ends 1
hour later. Your
username will automatically be added as the creator of the silenced entry.

See the sensuctl documentation for the supported time formats in the
 begin fag.

Validating the silenced entry

You can verify that the silenced entry against our entity, here named
 i-424242 , has been properly
created, by using sensuctl .

Once the silenced entry starts to take effect, events that are silenced will be
marked as so in
sensuctl events .

 i-424242 check-http 0 true 2018-03-16 13:22:16 -0400 EDT

WARNING: By default, a silenced event will be handled unless the handler uses
the
not_silenced flter to discard silenced events.

Next steps

You now know how to create silenced entries to plan a maintenance and hopefully
avoid false
positive. From this point, here are some recommended resources:

Read the silencing reference for in-depth documentation on silenced entries.

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring

Made with #monitoringlove by Sensu, Inc. © 2013-2019

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

How to reduce alert fatigue with flters

What are Sensu flters?

Sensu flters allow you to flter events destined for one or more event
handlers. Sensu flters
evaluate their expressions against the event data, to
determine if the event should be passed to an
event handler.

Why use a flter?

Filters are commonly used to flter recurring events (i.e. to eliminate
notifcation noise) and to flter
events from systems in pre-production
environments.

Using flters to reduce alert fatigue

The purpose of this guide is to help you reduce alert fatigue by confguring a
flter named hourly , for
a handler named slack , in order to prevent alerts
from being sent to Slack every minute. If you don’t
already have a handler in
place, learn how to send alerts with handlers .

Creating the flter

The frst step is to create a flter that we will call hourly , which matches
new events (where the
event’s occurrences is equal to 1) or hourly events
(so every hour after the frst occurrence,
calculated with the check’s
interval and the event’s occurrences).

Events in Sensu Go are handled regardless of
check execution status; even successful check events
are passed through the
pipeline. Therefore, it’s necessary to add a clause for non-zero status.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/reduce-alert-fatigue/
https://docs.sensu.io/

sensuctl flter create hourly \

--action allow \

--expressions "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

sensuctl handler update slack

Assigning the flter to a handler

Now that the hourly flter has been created, it can be assigned to a handler.
Here, since we want to
reduce the number of Slack messages sent by Sensu, we will apply
our flter to an already existing
handler named slack , in addition to the
built-in is_incident flter so only failing events are
handled.

Follow the prompts to add the hourly and is_incident flters to the Slack
handler.

Validating the flter

You can verify the proper behavior of this flter by using sensu-backend logs.
The default location of
these logs varies based on the platform used, but the
troubleshooting guide provides this information.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug","msg":"sending event to handler" , followed by
a second

one with the message
"msg":"pipelined executed event pipe
handler","output":"","status":0 . However, if the

event is being discarded by
our flter, a log entry with the message event fltered will appear
instead.

Next steps

You now know how to apply a flter to a handler and hopefully reduce alert
fatigue. From this point,
here are some recommended resources:

 Read the flters reference for in-depth
documentation on flters.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

##

backend store confguration

##

etcd-listen-client-urls: "https://localhost:2379"

etcd-listen-peer-urls: "https://localhost:2380"

etcd-initial-advertise-peer-urls: "https://localhost:2380"

etcd-cert-fle: "/path/to/your/cert"

etcd-key-fle: "/path/to/your/key"

etcd-trusted-ca-fle: "/path/to/your/ca/fle"

etcd-peer-cert-fle: "/path/to/your/peer/cert"

etcd-peer-key-fle: "/path/to/your/peer/key"

Securing Sensu

As with any piece of software, it is critical to minimize any attack surface exposed by the software.
Sensu is no different. The following component pieces need to be secured in order for Sensu to be
considered production ready:

etcd peer communication

Backend API

Dashboard

Sensu agent to server communication

We’ll cover securing each one of those pieces, starting with etcd peer communication.

Securing etcd peer communication

Let’s start by covering how to secure etcd peer communication via the confguration at
/etc/sensu/backend.yml . Let’s look at the parameters you’ll need to confgure:

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/securing-sensu/
https://docs.sensu.io/

etcd-peer-client-cert-auth: "true"

etcd-peer-trusted-ca-fle: "/path/to/your/peer/ca/fle"

##

backend ssl confguration

##

cert-fle: "/path/to/ssl/cert.pem"

key-fle: "/path/to/ssl/key.pem"

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

insecure-skip-tls-verify: false

##

backend api confguration

##

api-url: "https://localhost:8080"

Securing the API and the dashboard

Let’s go over how to secure the API and dashboard. Please note that by changing the parameters
below, the server will now communicate over TLS and expect agents connecting to it to use the
WebSocket secure protocol. In order for communication to continue, both this section and the
following section must be completed.

Both the Sensu Go API and the dashboard use a common stanza in /etc/sensu/backend.yml to
provide the certifcate, key, and CA fle needed to provide secure communication. Let’s look at the
attributes you’ll need to confgure:

Providing the above cert-fle and key-fle parameters will cause the API to serve HTTP requests over
SSL/TLS (https). As a result, you will also need to specify https:// schema
for the api-url

parameter:

In the example above, we provide the path to the cert, key and CA fle. After restarting the
sensu-backend service, the parameters are loaded and you are able to access the dashboard at

https://localhost:3000 . Confguring these attributes will also ensure that agents are able to
communicate securely. Let’s move on to securing agent to server communication.

https://localhost:3000/

##

agent confguration

##

backend-url:

 - "ws://127.0.0.1:8081"

##

agent confguration

##

backend-url:

 - "wss://127.0.0.1:8081"

Securing Sensu agent to server communication

We’ll now discuss securing agent to server communication. Please note: by changing the agent
confguration to communicate via WebSocket Secure protocol, the agent will no longer
communicate over a plaintext connection. If the server is not secured as described in the section
above, communication between the agent and server will not function.

By default, an agent uses the insecure ws:// transport. Let’s look at the example from
/etc/sensu/agent.yml :

In order to use WebSockets over SSL/TLS (wss), change the backend-url value to the wss://
schema:

The agent will then connect Sensu servers over wss. Do note that by changing the confguration to
wss, plaintext communication will not be possible.

It is also possible to provide a trusted CA as part of the agent confguration by passing
--trusted-ca-fle if starting the agent via sensu-agent start .

You may include it as part of the agent confguration in /etc/sensu/agent.yml as:

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

NOTE: If creating a Sensu cluster, every cluster member needs to be present in the
confguration. See the Sensu Go clustering guide for more information on how to
confgure agents for a clustered confguration.

Hopefully you’ve found this useful! If you fnd any issues or have any questions, feel free to reach out
in our Community Slack, or open an issue on Github.

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://slack.sensu.io/
https://github.com/sensu/sensu-docs/issues/new
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Made with #monitoringlove by Sensu, Inc. © 2013-2019

https://twitter.com/hashtag/monitoringlove

How to send alerts to Slack with handlers

What are Sensu handlers?

Sensu event handlers are actions executed by the Sensu server on events.

Why use a handler?

Handlers can be used for sending an email alert, creating or resolving an incident
(in PagerDuty, for
example), or storing metrics in a time-series
database (InfuxDB, for example).

Using a handler to send alerts to Slack

The purpose of this guide is to help you send alerts to Slack, on the channel
 monitoring , by
confguring a handler named slack to a check named
check-cpu . If you don’t already have a
check in place, this guide is a
great place to start.

Registering the asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
In this guide, we’ll
use the Sensu Slack handler asset to power a slack handler.

You can use the following sensuctl example to register the Sensu Slack handler asset for Linux
AMD64, or you can download the latest asset defnition for your platform from Bonsai and register
the asset using sensuctl create --fle flename.yml .

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://docs.sensu.io/sensu-go/5.7/guides/send-slack-alerts/
https://docs.sensu.io/

sensuctl asset create sensu-slack-handler --url "https://github.com/sensu/sensu-sla

handler_1.0.3_linux_amd64.tar.gz" --sha512

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b5871

Created

sensuctl handler create slack \

--type pipe \

--env-vars

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX" \

--command "sensu-slack-handler --channel '#monitoring'" \

--runtime-assets sensu-slack-handler

Created

You should see a confrmation message from sensuctl.

Geting a Slack webhook

If you’re already an admin of a Slack, visit
https://YOUR WORKSPACE NAME HERE.slack.com/services/new/incoming-webhook and follow

the steps to add the Incoming WebHooks integration, choose a channel, and save the settings.
(If
you’re not yet a Slack admin, start here to create a new workspace.)
After saving, you’ll see your
webhook URL under Integration Settings.

Creating the handler

Now we’ll use sensuctl to create a handler called slack that pipes event data to Slack using the
sensu-slack-handler asset.
Edit the command below to include your Slack channel and webhook

URL.
For more information about customizing your Sensu slack alerts, see the asset page in Bonsai.

You should see a confrmation message from sensuctl.

https://slack.com/get-started#create
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

sensuctl check set-handlers check-cpu slack

Assigning the handler to a check

With the slack handler now created, it can be assigned to a check. Here, since
we want to receive
Slack alerts whenever the CPU usage of our systems reach some
specifc thresholds, we will apply
our handler to the check check-cpu .

Validating the handler

It might take a few moments, once the handler is assigned to the check, for the
check to be
scheduled on the entities and the result sent back to Sensu backend,
but once an event is handled,
you should see the following message in
Slack.

Otherwise, you can verify the proper behavior of this handler by using
 sensu-backend logs.
See the
troubleshooting guide for log locations by platform.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug","msg":"sending event to handler" , followed
by a second

one with the message
"msg":"pipelined executed event pipe
handler","output":"","status":0 .

Next steps

You now know how to apply a handler to a check and take action on events. From
this point, here are
some recommended resources:

Read the handlers reference for in-depth
documentation on handlers.

Read our guide on reducing alert fatigue with flters.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

ForwardToSyslog=yes

For the sensu-backend service, inside /etc/rsyslog.d/99-sensu-backend.conf

if $programname == 'sensu-backend' then {

 /var/log/sensu/sensu-backend.log

 ~

}

For the sensu-agent service, inside /etc/rsyslog.d/99-sensu-agent.conf

if $programname == 'sensu-agent' then {

 /var/log/sensu/sensu-agent.log

 ~

}

Sensu service logging with systemd

By default, systems where systemd is the service manager do not write logs to /var/log/sensu/

for the sensu-agent and the sensu-backend services. This guide walks you through how to add
log forwarding from journald to syslog, have rsyslog write logging data to disk, and set up log rotation
of the newly created log fles.

To confgure journald to forward logging data to syslog, modify /etc/systemd/journald.conf to
include the following line:

Next, set up rsyslog to write the logging data received from journald to
/var/log/sensu/servicename.log . In this example, the sensu-backend and sensu-agent

logging data is sent to individual fles named after the service. The sensu-backend is not required if
only setting up log forwarding for the sensu-agent service.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/systemd-logs/
https://docs.sensu.io/

systemctl restart systemd-journald

systemctl restart rsyslog

Inside /etc/logrotate.d/sensu.conf

/var/log/sensu/* {

 weekly

 rotate 5

 size 100M

 compress

 delaycompress

}

logrotate -d /etc/logrotate.d/sensu.conf

Restart rsyslog and journald to apply the new confguration:

Set up log rotation for newly created log fles. This example rotates all log fles in /var/log/sensu/

weekly, unless the size of 100M is reached frst. The last fve rotated logs are kept and compressed,
with the exception of the most recent one.

You can use the following command to see what logrotate would do if it were executed now based
on the above schedule and size threshold.

About Sensu

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Troubleshooting

Service logging

Logs produced by Sensu services – i.e. sensu-backend and sensu-agent – are
often the best place to
start when troubleshooting a variety of issues.

Log levels

Each log message is associated with a log level, indicative of the relative severity of the event being
logged:

Log level Description

panic Severe errors causing the service to shut down in an unexpected state

fatal Fatal errors causing the service to shut down (status 0)

error Non-fatal service error messages

warn Warning messages indicating potential issues

info Informational messages representing service actions

debug Detailed service operation messages to help troubleshoot issues

These log levels can be confgured by specifying the desired log level as the
value of log-level in
the service confguration fle (e.g. agent.yml or
backend.yml confguration fles), or as an argument
to the --log-level
command line fag:

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/guides/troubleshooting/
https://docs.sensu.io/

sensu-agent start --log-level debug

Changes to log level via confguration fle or command line arguments require
restarting the service.
For guidance on restarting a service, please
consult the Operating section of the agent or
backend
reference, respectively.

Log fle locations

Sensu services print structured log messages to standard output.
In order to capture these log
messages to disk or another logging facility, Sensu services
make use of capabilities provided by the
underlying operating system’s service
management. For example, logs are sent to the journald when
systemd is the service manager,
whereas log messages are redirected to /var/log/sensu when
running under sysv
init schemes. If you are running systemd as your service manager and would
rather have logs written to /var/log/sensu/ , see the guide to forwarding logs from journald to
syslog.

In the table below, the common targets for logging and example commands for
following those logs
are described. The name of the desired service, e.g.
backend or agent may be substituted for
${service} variable.

journalctl --unit

sensu-${service} --follow

tail --follow

/var/log/sensu/sensu-${service}

journalctl --unit

sensu-${service} --follow

Platform Version Target Command to follow log

RHEL/Centos >= 7 journald

RHEL/Centos <= 6 log fle

Ubuntu >= 15.04 journald

https://dzone.com/articles/what-is-structured-logging

{"component":"agent","error":"open /var/cache/sensu/sensu-agent/assets.db:

permission denied","level":"fatal","msg":"error executing sensu-

agent","time":"2019-02-21T22:01:04Z"}

tail --follow

/var/log/sensu/sensu-${service}

journalctl --unit

sensu-${service} --follow

tail --follow

/var/log/sensu/sensu-${service}

Get-Content - Path

"C:\scripts\test.txt" -Wait

Ubuntu <= 14.10 log fle

Debian >= 8 journald

Debian <= 7 log fle

Windows Any log fle

NOTE: Platform versions described above are for reference only and do not
supercede the
documented supported platforms.

Log messages

Permission issues

Files and folders within /var/cache/sensu/ and /var/lib/sensu/ need to be owned by the
sensu user and group. You will see a logged error similar to the following if there is a permission
issue with either the sensu-backend or the sensu-agent:

{"component":"backend","level":"fatal","msg":"error starting etcd: mkdir

/var/lib/sensu: permission denied","time":"2019-03-05T20:24:01Z"}

sudo chown -R sensu:sensu /var/cache/sensu/sensu-backend

sudo chown -R sensu:sensu /var/cache/sensu/sensu-agent

You can use a recursive chown to resolve permission issues with the sensu-backend:

or the sensu-agent:

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring

Made with #monitoringlove by Sensu, Inc. © 2013-2019

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Dashboard

Filtering

Overview

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/dashboard/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Dashboard fltering

Events page fltering

Entities page fltering

Checks page fltering

Silences page fltering

Arrays

Regular expressions

The Sensu dashboard supports fltering on the events, entities, checks, and silences pages.
Dashboard
fltering uses Sensu query expression syntax (for example: entity.entity_class === "proxy")
depending on the scope of the page.

Syntax quick reference

operator description

=== / !== Identity operator / Nonidentity operator

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Events page fltering

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/dashboard/filtering/
https://docs.sensu.io/

entity.system.hostname === "server1"

check.status > 0 && check.name === "check_http"

entity_class === "proxy"

system.os === "linux" || system.os === "windows"

name === "check_cpu"

Filtering on the events page supports all entity and check attributes present in the event data,
prefxed with entity. or check. respectively.

To show only events for the entity hostname server1 :

To show only events with a warning or critical status produced by the check named check_http :

Entities page fltering

Filtering on the entities page assumes the entity scope and supports all entity attributes.

To show only entities of entity class proxy :

To show only entities running on Linux or Windows:

Checks page fltering

Filtering on the check page assumes the check scope and supports all check attributes.

To show only the check named check_cpu :

!publish

creator === "admin"

check === "check_cpu"

handlers.indexOf("slack") >= 0

To show only checks with the publish attribute set to false :

Silences page fltering

Filtering on the silences page assumes the silences scope and supports all silencing entry attributes.

To show only silences with the creator admin :

To show only silences applied to the check check_cpu :

Arrays

To flter based on an attribute that contains an array of elements, use the .indexOf method.

On the checks page, to show only checks with the handler slack :

Regular expressions

The Sensu dashboard supports fltering with regular expressions using the .match syntax.

On the checks page, to show only checks with names prefxed with metric- :

!!name.match(/^metric-/)

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Dashboard overview

Accessing the dashboard

Signing in

Namespaces

Themes

The Sensu backend includes the Sensu dashboard:
a unifed view of your events, entities, and
checks with user-friendly tools to reduce alert fatigue.

Accessing the dashboard

After starting the Sensu backend, you can access the dashboard in your browser
by visiting
http://localhost:3000 . You may need to replace localhost with the
hostname or IP address where

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

http://localhost:3000/
https://docs.sensu.io/sensu-go/5.7/dashboard/overview/
https://docs.sensu.io/

the Sensu backend is running.

Signing in

Sign in to the dashboard with your sensuctl username and password.
See the role-based access
control reference for default user credentials and instructions for creating new users.

Namespaces

The dashboard displays events, entities, checks, and silences for a single namespace at a time.
By
default, the dashboard displays the default namespace.
To switch namespaces, select the menu
icon in the upper-left corner, and choose a namespace from the dropdown.

Sensu dashboard namespace switcher

Themes

Use the preferences menu to change the theme or switch to the dark theme.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

API

Assets

Auth

Authproviders

Checks

Cluster-Role-Bindings

Cluster-Roles

Cluster

Entities

Events

Filters

Handlers

Health

Hooks

License

Mutators

Namespaces

Overview

Role-Bindings

Roles

Silenced

Tessen

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/
https://docs.sensu.io/

 Users

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/assets -H "Authorization:

[

 {

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4

Assets API

The /assets API endpoint

/assets (GET)

/assets (POST)

The /assets/:asset API endpoint

/assets/:asset (GET)

/assets/:asset (PUT)

The /assets API endpoint

/assets (GET)

The /assets API endpoint provides HTTP GET access to asset data.

EXAMPLE

The following example demonstrates a request to the /assets API, resulting in
a JSON Array
containing asset defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/assets/
https://docs.sensu.io/

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

]

API Specifcation

[

 {

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d1548

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 },

/assets
(GET)

description Returns the list of assets.

example
url

http://hostname:8080/api/core/v2/namespaces/default/assets

response
type

Array

response
codes

Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/assets

 {

 "url": "http://example.com/asset2.tar.gz",

 "sha512":

"37c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a84f926bf4328fbad2b9cac873d1

 "metadata": {

 "name": "check_script2",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

]

/assets (POST)

{

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d1548

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

/assets
(POST)

description Create a Sensu asset.

example
URL

http://hostname:8080/api/core/v2/namespaces/default/assets

payload

http://hostname:8080/api/core/v2/namespaces/default/assets

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/check_script -H "A

{

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4

 "flters": [

 "system.os == 'linux'",

 "system.arch == 'amd64'"

],

 "metadata": {

 "name": "check_script",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

response
codes

Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /assets/:asset API endpoint

/assets/:asset (GET)

The /assets/:asset API endpoint provides HTTP GET access to asset data for specifc :asset
defnitions, by asset name .

EXAMPLE

In the following example, querying the /assets/:asset API returns a JSON Map
containing the
requested :asset defnition (in this example: for the :asset named
check_script).

API Specifcation

{

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8

 "flters": [

 "system.os == 'linux'",

 "system.arch == 'amd64'"

],

 "metadata": {

 "name": "check_script",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

/assets/:asset
(GET)

description Returns an asset.

example url http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/assets/:asset (PUT)

http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

API Specifcation

{

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

/assets/:asset
(PUT)

description Create or update a Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Authorization API

The authorization API is available in Sensu Go version 5.1.0 and later.
See the upgrade guide to upgrade
your Sensu installation, and visit the latest API documentation.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/api/authproviders
https://docs.sensu.io/sensu-go/5.7/api/auth/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Authentication providers API

The authentication providers API is available in Sensu Go version 5.2.0 and later.
See the upgrade guide
to upgrade your Sensu installation, and visit the latest API documentation.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/api/authproviders
https://docs.sensu.io/sensu-go/5.7/api/authproviders/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Checks API

The /checks API endpoint

/checks (GET)

/checks (POST)

The /checks/:check API endpoint

/checks/:check (GET)

/checks/:check (PUT)

/checks/:check (DELETE)

The /checks/:check/execute API endpoint

/checks/:check/execute (POST)

The /checks/:check/hooks/:type API endpoint

/checks/:check/hooks/:type (PUT)

The /checks/:check/hooks/:type/hook/:hook API endpoint

/checks/:check/hooks/:type/hook/:hook (DELETE)

The /checks API endpoint

/checks (GET)

The /checks API endpoint provides HTTP GET access to check data.

EXAMPLE

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/checks/
https://docs.sensu.io/

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK

[

 {

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

 }

]

The following example demonstrates a request to the /checks API, resulting in
a JSON Array
containing check defnitions.

API Specifcation

/checks (GET)

description Returns the list of checks.

example url http://hostname:8080/api/core/v2/namespaces/default/checks

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/checks

[

 {

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

 },

 {

 "command": "http_check.sh https://sensu.io",

 "handlers": [

 "slack"

],

 "interval": 15,

 "proxy_entity_name": "sensu.io",

 "publish": true,

 "subscriptions": [

 "site"

],

 "metadata": {

 "name": "check-sensu-site",

 "namespace": "default"

 }

 }

]

output

/checks (POST)

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK

{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

EXAMPLE

In the following example, an HTTP POST request is submitted to the /checks API to create a
check-cpu check.
The request includes the check defnition in the request body and returns a

successful HTTP 200 OK response and the created check defnition.

 "name": "check-cpu",

 "namespace": "default"

 }

}

API Specifcation

{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

/checks (POST)

description Create a Sensu check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks

example payload

payload parameters Required check attributes: interval (integer) or cron (string), and a
metadata scope containing name (string) and namespace (string).

For more information about creating checks, see the check reference .

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 200 OK

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

The /checks/:check API endpoint

/checks/:check (GET)

The /checks/:check API endpoint provides HTTP GET access to check data for specifc :check
defnitions, by check name .

EXAMPLE

In the following example, querying the /checks/:check API returns a JSON Map
containing the
requested :check defnition (in this example: for the :check named
check-cpu).

API Specifcation

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

/checks/:check
(GET)

description Returns a check.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/checks/:check (PUT)

EXAMPLE

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 200 OK

In the following example, an HTTP PUT request is submitted to the /checks/:check API to update
the check-cpu check, resulting in a 200 (OK) HTTP response code and the updated check defnition.

API Specifcation

/checks/:check
(PUT)

description Create or update a Sensu check given the name of the check as a URL
parameter.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu

payload

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

curl -X DELETE \

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

payload parameters Required check attributes: interval (integer) or cron (string), and a
metadata scope containing name (string) and namespace (string).

For more information about creating checks, see the check reference .

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/checks/:check (DELETE)

The /checks/:check API endpoint provides HTTP DELETE access to delete a check from Sensu
given the check name.

EXAMPLE

The following example shows a request to delete the check named check-cpu , resulting in a
successful HTTP 204 No Content response.

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 204 No Content

curl -X POST \

API Specifcation

/checks/:check
(DELETE)

description Removes a check from Sensu given the check name.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /checks/:check/execute API endpoint

/checks/:check/execute (POST)

The /checks/:check/execute API endpoint provides HTTP POST access to create an ad-hoc check
execution request, allowing you to execute a check on demand.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /checks/:check/execute API
to execute the check-sensu-site check.
The request includes the check name in the request body
and returns a successful HTTP 202 Accepted response and an issued timestamp.

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{"check": "check-sensu-site"}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-sensu-

site/execute

HTTP/1.1 202 Accepted

{"issued":1543861798}

PRO TIP: Include the subscriptions attribute with the request body to override the
subscriptions confgured in the check defnition. This gives you the fexibility to execute a
check on any Sensu entity or group of entities on demand.

API Specifcation

{

 "check": "check-sensu-site",

 "subscriptions": [

 "entity:i-424242"

]

}

/checks/:check/execute
(POST)

description Creates an adhoc request to execute a check given the check name.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check
sensu-site/execute

payload

payload parameters check (required): the name of the check to execute, and
subscriptions (optional): an array of subscriptions to publish the

check request to. When provided with the request, the
subscriptions attribute overrides any subscriptions confgured in

the check defnition.

http://hostname:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute
http://hostname:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "critical": [

 "process_tree"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-

cpu/hooks/critical

HTTP/1.1 204 No Content

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /checks/:check/hooks/:type API endpoint

/checks/:check/hooks/:type (PUT)

The /checks/:check/hooks/:type API endpoint provides HTTP PUT access to assign a hook to a
check.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /checks/:check/hooks/:type

API,
assigning the process_tree hook to the check-cpu check in the event of a critical type
check result, resulting in a successful 204 (No Content) HTTP response code.

API Specifcation

checks/:check/hooks/:type

{

 "critical": [

 "example-hook1",

 "example-hook2"

]

}

(PUT)

description Assigns a hook to a check given the check name and check respo
type.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/ch
cpu/hooks/critical

example payload

payload parameters This endpoint requires a JSON map of check response types (for
example: critical , warning), each containing an array of hoo
names.

response codes Success: 204 (No Content)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /checks/:check/hooks/:type/hook/:hook API endpoint

/checks/:check/hooks/:type/hook/:hook (DELETE)

This endpoint provides HTTP DELETE access to a remove a hook from a check.

EXAMPLE

The following example shows a request to remove the process_tree hook from the check-cpu
check, resulting in a successful 204 (No Content) HTTP response code.

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-

cpu/hooks/critical/hook/process_tree

HTTP/1.1 204 No Content

API Specifcation

/checks/:check/hooks/
:type/hook/:hook
(DELETE)

description Removes a single hook from a check given the check name, check
response type, and hook name. See the checks reference for available
types.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu/hooks/critical/hook/process_tree

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

About Sensu

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical/hook/process_tree
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical/hook/process_tree

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/clusterrolebindings -H "Authorization:

Bearer $SENSU_TOKEN"

[

 {

 "subjects": [

Cluster role bindings API

The /clusterrolebindings API endpoint

/clusterrolebindings (GET)

/clusterrolebindings (POST)

The /clusterrolebindings/:clusterrolebinding API endpoint

/clusterrolebindings/:clusterrolebinding (GET)

/clusterrolebindings/:clusterrolebinding (PUT)

/clusterrolebindings/:clusterrolebinding (DELETE)

The /clusterrolebindings API endpoint

/clusterrolebindings (GET)

The /clusterrolebindings API endpoint provides HTTP GET access to cluster role binding data.

EXAMPLE

The following example demonstrates a request to the /clusterrolebindings API, resulting in
a
JSON Array containing cluster role binding defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/cluster-role-bindings/
https://docs.sensu.io/

 {

 "type": "Group",

 "name": "cluster-admins"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "cluster-admin"

 }

 },

 {

 "subjects": [

 {

 "type": "Group",

 "name": "system:agents"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "system:agent"

 },

 "metadata": {

 "name": "system:agent"

 }

 }

]

API Specifcation

/clusterrolebindings
(GET)

description Returns the list of cluster role bindings.

example url http://hostname:8080/api/core/v2/clusterrolebindings

http://hostname:8080/api/core/v2/clusterrolebindings

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "cluster-admins"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "cluster-admin"

 }

 }

]

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

/clusterrolebindings (POST)

The /clusterrolebindings API endpoint provides HTTP POST access to create a cluster role
binding.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /clusterrolebindings API to
create a cluster role binding that assigns the cluster-admin cluster role to the user bob .
The
request includes the cluster role binding defnition in the request body and returns a successful
HTTP 200 OK response and the created cluster role binding defnition.

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

API Specifcation

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

/clusterrolebindings
(POST)

description Create a Sensu cluster role binding.

example URL http://hostname:8080/api/core/v2/clusterrolebindings

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /clusterrolebindings/:clusterrolebinding API endpoint

/clusterrolebindings/:clusterrolebinding (GET)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP GET access to

http://hostname:8080/api/core/v2/clusterrolebindings

curl http://127.0.0.1:8080/api/core/v2/clusterrolebindings/bob-binder -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

cluster role binding data for specifc :clusterrolebinding defnitions, by cluster role binding
name .

EXAMPLE

In the following example, querying the /clusterrolebindings/:clusterrolebinding API returns a
JSON Map
containing the requested :clusterrolebinding defnition (in this example: for the
:clusterrolebinding named
bob-binder).

API Specifcation

/clusterrolebindings/:clusterrolebinding
(GET)

description Returns a cluster role binding.

example url http://hostname:8080/api/core/v2/clusterrolebind

http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

binder

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/clusterrolebindings/:clusterrolebinding (PUT)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP PUT access to
create or update a cluster role binding, by cluster role binding name .

EXAMPLE

In the following example, an HTTP PUT request is submitted to the
/clusterrolebindings/:clusterrolebinding API to create a cluster role binding that assigns the
cluster-admin cluster role to users in the group ops .
The request includes the cluster role binding

defnition in the request body and returns a successful HTTP 200 OK response and the created

http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-group-binder

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}

cluster role binding defnition.

API Specifcation

{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}

/clusterrolebindings/:clusterrolebinding
(PUT)

description Create or update a Sensu cluster role binding.

example URL http://hostname:8080/api/core/v2/clusterrolebind
group-binder

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/clusterrolebindings/:clusterrolebinding (DELETE)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP DELETE access to
delete a cluster role binding from Sensu given the cluster role binding name.

http://hostname:8080/api/core/v2/clusterrolebindings/ops-group-binder
http://hostname:8080/api/core/v2/clusterrolebindings/ops-group-binder

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-binding

HTTP/1.1 204 No Content

EXAMPLE

The following example shows a request to delete the cluster role binding ops-binding , resulting in
a successful HTTP 204 No Content response.

API Specifcation

/clusterrolebindings/:clusterrolebinding
(DELETE)

description Removes a cluster role binding from Sensu given
cluster role binding name.

example url http://hostname:8080/api/core/v2/clusterrolebind
binder

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder
http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/clusterroles -H "Authorization: Bearer

$SENSU_TOKEN"

HTTP/1.1 200 OK

[

Cluster roles API

The /clusterroles API endpoint

/clusterroles (GET)

/clusterroles (POST)

The /clusterroles/:clusterrole API endpoint

/clusterroles/:clusterrole (GET)

/clusterroles/:clusterrole (PUT)

/clusterroles/:clusterrole (DELETE)

The /clusterroles API endpoint

/clusterroles (GET)

The /clusterroles API endpoint provides HTTP GET access to cluster role data.

EXAMPLE

The following example demonstrates a request to the /clusterroles API, resulting in
a JSON Array
containing cluster role defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/cluster-roles/
https://docs.sensu.io/

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "extensions",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "silenced",

 "roles",

 "rolebindings"

],

 "resource_names": null

 },

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "namespaces"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin"

 }

 }

]

API Specifcation

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

/clusterroles
(GET)

description Returns the list of cluster roles.

example url http://hostname:8080/api/core/v2/clusterroles

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/clusterroles

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin"

 }

 }

]

/clusterroles (POST)

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

/clusterroles
(POST)

description Create a Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles

payload

http://hostname:8080/api/core/v2/clusterroles

curl http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

}

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /clusterroles/:clusterrole API endpoint

/clusterroles/:clusterrole (GET)

The /clusterroles/:clusterrole API endpoint provides HTTP GET access to cluster role data for
specifc :clusterrole defnitions, by cluster role name .

EXAMPLE

In the following example, querying the /clusterroles/:clusterrole API returns a JSON Map
containing the requested :clusterrole defnition (in this example: for the :clusterrole named
global-event-reader).

 "events"

],

 "resource_names": null

 }

]

}

API Specifcation

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

/clusterroles/:clusterrole
(GET)

description Returns a cluster role.

example url http://hostname:8080/api/core/v2/clusterroles/global-event-
reader

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/clusterroles/global-event-reader
http://hostname:8080/api/core/v2/clusterroles/global-event-reader

 }

]

}

/clusterroles/:clusterrole (PUT)

API Specifcation

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

/clusterroles/:clusterrole
(PUT)

description Create or update a Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles/global-event-
reader

payload

http://hostname:8080/api/core/v2/clusterroles/global-event-reader
http://hostname:8080/api/core/v2/clusterroles/global-event-reader

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader

HTTP/1.1 204 No Content

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/clusterroles/:clusterrole (DELETE)

The /clusterroles/:clusterrole API endpoint provides HTTP DELETE access to delete a cluster
role from Sensu given the cluster role name.

EXAMPLE

The following example shows a request to delete the cluster role global-event-reader , resulting
in a successful HTTP 204 No Content response.

API Specifcation

/clusterroles/:clusterrole
(DELETE)

description Removes a cluster role from Sensu given the cluster role
name.

example url http://hostname:8080/api/core/v2/clusterroles/global-event-
reader

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/clusterroles/global-event-reader
http://hostname:8080/api/core/v2/clusterroles/global-event-reader

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/cluster/members

HTTP/1.1 200 OK

{

 "header": {

Cluster API

The /cluster/members API endpoint

/cluster/members (GET)

/cluster/members (POST)

The /cluster/members/:member API endpoint

/cluster/members/:member (PUT)

/cluster/members/:member (DELETE)

The /cluster/members API endpoint

/cluster/members (GET)

The /cluster/members API endpoint provides HTTP GET access to Sensu cluster data.

EXAMPLE

The following example demonstrates a request to the /cluster/members API, resulting in
a JSON
Map containing a Sensu cluster defnition.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/cluster/
https://docs.sensu.io/

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://127.0.0.1:2379"

]

 }

]

}

API Specifcation

{

 "header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

/cluster/members
(GET)

description Returns the cluster defnition.

example url http://hostname:8080/api/core/v2/cluster/members

response type Map

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

example output

http://hostname:8080/api/core/v2/cluster/members

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/cluster/members?peer-

addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 },

 "members": [

 {

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://127.0.0.1:2379"

]

 }

]

}

/cluster/members (POST)

The /cluster/members API endpoint provides HTTP POST access to create a Sensu cluster
member.

EXAMPLE

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

API Specifcation

/cluster/members/:member
(POST)

description Creates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members?
peer-addrs=http://127.0.0.1:2380

query parameters peer-addrs (required): A comma-delimited list
of peer addresses

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /cluster/members/:member API endpoint

/cluster/members/:member (PUT)

http://hostname:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380
http://hostname:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/cluster/members/8927110dc66458af?peer-

addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

EXAMPLE

API Specifcation

/cluster/members/:member
(PUT)

description Creates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66
peer-addrs=http://127.0.0.1:2380

http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?peer-addrs=http://127.0.0.1:2380
http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?peer-addrs=http://127.0.0.1:2380

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/cluster/members/8927110dc66458

HTTP/1.1 204 No Content

url parameters 8927110dc66458af (required): Required hex-encoded ui
cluster member ID generated using sensuctl cluster

member-list

query parameters peer-addrs (required): A comma-delimited list of peer
addresses

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

/cluster/members/:member (DELETE)

The /cluster/members/:member API endpoint provides HTTP DELETE access to remove a Sensu
cluster member.

EXAMPLE

The following example shows a request to remove the Sensu cluster member with the ID
8927110dc66458af , resulting in a successful HTTP 204 No Content response.

API Specifcation

/cluster/
members/:member
(DELETE)

description Removes a member from a Sensu cluster given the member ID.

example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af

url parameters 8927110dc66458af (required): Required hex-encoded uint64
cluster member ID generated using sensuctl cluster

member-list

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative

Made with #monitoringlove by Sensu, Inc. © 2013-2019

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities -H

"Authorization: Bearer $SENSU_TOKEN"

[

 {

 "entity_class": "agent",

Entities API

The /entities API endpoint

/entities (GET)

/entities (POST)

The /entities/:entity API endpoint

/entities/:entity (GET)

/entities/:entity (PUT)

/entities/:entity (DELETE)

The /entities API endpoint

/entities (GET)

The /entities API endpoint provides HTTP GET access to entity data.

EXAMPLE

The following example demonstrates a request to the /entities API, resulting in
a JSON Array
containing entity defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/entities/
https://docs.sensu.io/

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

]

API Specifcation

[

 {

/entities (GET)

description Returns the list of entities.

example url http://hostname:8080/api/core/v2/namespaces/default/entities

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/entities

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

]

/entities (POST)

{

 "entity_class": "proxy",

 "subscriptions": [

 "web"

],

/entities (POST)

description Create a Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities

payload

http://hostname:8080/api/core/v2/namespaces/default/entities

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos

-H "Authorization: Bearer $SENSU_TOKEN"

{

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /entities/:entity API endpoint

/entities/:entity (GET)

The /entities/:entity API endpoint provides HTTP GET access to entity data for specifc
:entity defnitions, by entity name .

EXAMPLE

In the following example, querying the /entities/:entity API returns a JSON Map
containing the
requested :entity defnition (in this example: for the :entity named
sensu-centos).

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

API Specifcation

{

 "entity_class": "agent",

 "system": {

/entities/:entity
(GET)

description Returns a entity.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

/entities/:entity (PUT)

API Specifcation

{

 "entity_class": "proxy",

 "subscriptions": [

/entities/:entity
(PUT)

description Create or update a Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

payload

http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/server1

HTTP/1.1 204 No Content

 "web"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/entities/:entity (DELETE)

The /entities/:entity API endpoint provides HTTP DELETE access to delete an entity from
Sensu given the entity name.

EXAMPLE

The following example shows a request to delete the entity server1 , resulting in a successful HTTP
204 No Content response.

API Specifcation

/entities/:entity
(DELETE)

description Removes a entity from Sensu given the entity name.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring

Made with #monitoringlove by Sensu, Inc. © 2013-2019

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

Events API

The /events API endpoint

/events (GET)

/events (POST)

The /events/:entity API endpoint

/events/:entity (GET)

The /events/:entity/:check API endpoint

/events/:entity/:check (GET)

/events/:entity/:check (PUT)

/events/:entity/:check (DELETE)

The /events API endpoint

/events (GET)

The /events API endpoint provides HTTP GET access to event data.

EXAMPLE

The following example demonstrates a request to the /events API, resulting in
a JSON Array
containing event defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/events/
https://docs.sensu.io/

HTTP/1.1 200 OK

[

 {

 "timestamp": 1542667666,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "testing",

 "entity:webserver01"

],

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 },

 "check": {

 "check_hooks": null,

 "duration": 2.033888684,

 "command": "http_check.sh http://localhost:80",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [],

 "subscriptions": [

 "testing"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "duration": 0.010849143,

 "output": "",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": [],

 "env_vars": null,

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

 }

]

API Specifcation

/events (GET)

description Returns the list of events.

example url http://hostname:8080/api/core/v2/namespaces/default/events

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/events

[

 {

 "timestamp": 1542667666,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "testing",

 "entity:webserver01"

],

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 },

 "check": {

 "check_hooks": null,

 "duration": 2.033888684,

 "command": "http_check.sh http://localhost:80",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [],

 "subscriptions": [

 "testing"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

 "timeout": 0,

 "duration": 0.010849143,

 "output": "",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": [],

 "env_vars": null,

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

 }

]

/events (POST)

The /events API endpoint provides HTTP POST access to create an event and send it to the Sensu
pipeline.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /events API to create an event.
The request includes information about the check and entity represented by the event and returns a
successful HTTP 200 OK response and the event defnition.

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "state": "failing",

 "status": 2,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "timestamp": 1552582569

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

HTTP/1.1 200 OK

{"timestamp":1552582569,"entity":{"entity_class":"proxy","system":{"network":{"inte

error","state":"failing","status":2,"total_state_change":0,"last_ok":0,"occurrences

API Specifcation

/events (POST)

description Create a Sensu event for a new entity and check combination. To create
an event for an existing entity and check combination or to update an
existing event, use the /events/:entity/:check PUT endpoint.

example URL http://hostname:8080/api/core/v2/namespaces/default/events

payload

http://hostname:8080/api/core/v2/namespaces/default/events

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "state": "failing",

 "status": 2,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "timestamp": 1552582569

}

payload parameters See the payload parameters section for the /events/:entity/:check

PUT endpoint.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Confict: 409 (Event already exists for the entity and check)
Error: 500 (Internal Server Error)

The /events/:entity API endpoint

/events/:entity (GET)

The /events/:entity API endpoint provides HTTP GET access to event data specifc to an
:entity , by entity name .

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox

HTTP/1.1 200 OK

[

 {

 "timestamp": 1543871497,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543858763,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "command": "check-cpu.sh -w 75 -c 90",

 "duration": 1.054253257,

 "executed": 1543871496,

 "history": [

 {

 "status": 0,

 "executed": 1543870296

 }

EXAMPLE

In the following example, querying the /events/:entity API returns a list of Sensu events for the
sensu-go-sandbox entity and a successful HTTP 200 OK response.

],

 "issued": 1543871496,

 "output": "CPU OK - Usage:.50\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871497,

 "occurrences": 1,

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

 },

 "metadata": {

 "namespace": "default"

 }

 },

 {

 "timestamp": 1543871524,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

 "name": "keepalive",

 "namespace": "default"

 }

 },

 "metadata": {}

 }

]

API Specifcation

/events/:entity
(GET)

description Returns a list of events for the specifed entity.

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-
go-sandbox

response type Array

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox

[

 {

 "timestamp": 1543871524,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

output

 "name": "keepalive",

 "namespace": "default"

 }

 },

 "metadata": {}

 }

]

The /events/:entity/:check API endpoint

/events/:entity/:check (GET)

API Specifcation

{

 "timestamp": 1543871524,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

/events/:entity/:check
(GET)

description Returns an event for a given entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-
go-sandbox/check-cpu

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

 "name": "keepalive",

 "namespace": "default"

 }

 },

 "metadata": {}

}

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "timestamp": 1552582569

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-

health

/events/:entity/:check (PUT)

The /events/:entity/:check API endpoint provides HTTP PUT access to create or update an
event and send it to the Sensu pipeline.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /events/:entity/:check API to
create an event for the server1 entity and the server-health check and process it using the
slack event handler.
The event includes a status code of 1 , indicating a warning, and an output

message of “Server error”.

HTTP/1.1 200 OK

{"timestamp":1552582569,"entity":{"entity_class":"proxy","system":{"network":{"inte

error","status":1,"total_state_change":0,"last_ok":0,"occurrences":0,"occurrences_w

sensuctl event list

 Entity Check Output Status Silenced Timestamp

────────────── ──────────── ─────────────────────────────────── ────────

────────── ───────────────────────────────

 server1 server-health Server error 1 false 2019-03-14 16:56:09 +0000 UTC

The request returns a 200 (OK) HTTP response code and the resulting event defnition.

You can use sensuctl or the Sensu dashboard to see the event.

You should see the event with the status and output specifed in the request.

API Specifcation

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

/events/:entity/:check
(PUT)

description Creates an event for a given entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/server1/s
health

payload

http://hostname:8080/api/core/v2/namespaces/default/events/server1/server-health
http://hostname:8080/api/core/v2/namespaces/default/events/server1/server-health

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "timestamp": 1552582569

}

payload parameters See the payload parameters section below.

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

Payload parameters

The /events/:entity/:check PUT endpoint requires a request payload containing an entity

scope and a check scope.
The entity scope contains information about the component of your
infrastructure represented by the event.
At a minimum, Sensu requires the entity scope to contain
the entity_class (agent or proxy) and the entity name and namespace within a metadata
scope.
For more information about entity attributes, see the entity specifcation.

The check scope contains information about the event status and how the event was created.
At a
minimum, Sensu requires the check scope to contain a name within a metadata scope and either
an interval or cron attribute.
For more information about check attributes, see the check
specifcation.

Example request with minimum required event atributes

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-

health

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

The minimum required attributes shown above let you create an event using the
/events/:entity/:check PUT endpoint, however the request can include any attributes defned in

the event specifcation.
To create useful, actionable events, we recommend adding check attributes
such as the event status (0 for OK, 1 for warning, 2 for critical), an output message, and one
or more event handlers .
For more information about these attributes and their available values, see
the event specifcation.

While a timestamp is not required to create an event, Sensu assigns a timestamp of 0 (January 1,
1970) to events without a specifed timestamp, so we recommend adding a Unix timestamp when
creating events.

Example request with minimum recommended event atributes

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "timestamp": 1552582569

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-

health

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

Creating metric events

In addition to the entity and check scopes, Sensu events can include a metrics scope
containing metrics in Sensu metric format.
See the events reference and for more information about
Sensu metric format.

Example request including metrics

 },

 "check": {

 "status": 0,

 "output_metric_handlers": ["infuxdb"],

 "interval": 60,

 "metadata": {

 "name": "server-metrics"

 }

 },

 "metrics": {

 "handlers": [

 "infuxdb"

],

 "points": [

 {

 "name": "server1.server-metrics.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "server1.server-metrics.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552582569

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-

metrics

/events/:entity/:check (DELETE)

EXAMPLE

The following example shows a request to delete the event produced by the sensu-go-sandbox

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-

sandbox/check-cpu

HTTP/1.1 204 No Content

entity and check-cpu check, resulting in a successful HTTP 204 No Content response.

API Specifcation

/events/:entity/:check
(DELETE)

description Deletes the event created by the specifed entity using the specifed
check

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-
go-sandbox/check-cpu

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

About Sensu

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/flters -H

"Authorization: Bearer $SENSU_TOKEN"

[

 {

 "metadata": {

Filters API

The /flters API endpoint

/flters (GET)

/flters (POST)

The /flters/:flter API endpoint

/flters/:flter (GET)

/flters/:flter (PUT)

/flters/:flter (DELETE)

The /flters API endpoint

/flters (GET)

The /flters API endpoint provides HTTP GET access to flter data.

EXAMPLE

The following example demonstrates a request to the /flters API, resulting in
a JSON Array
containing flter defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/filters/
https://docs.sensu.io/

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

 }

]

API Specifcation

[

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

/flters (GET)

description Returns the list of flters.

example url http://hostname:8080/api/core/v2/namespaces/default/flters

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/filters

],

 "runtime_assets": []

 },

 {

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'production'"

],

 "runtime_assets": []

 }

]

/flters (POST)

{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'production'"

/flters (POST)

description Create a Sensu flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters

payload

http://hostname:8080/api/core/v2/namespaces/default/filters

curl

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/state_change_only -H

"Authorization: Bearer $SENSU_TOKEN"

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

}

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /flters/:flter API endpoint

/flters/:flter (GET)

The /flters/:flter API endpoint provides HTTP GET access to flter data for specifc :flter
defnitions, by flter name .

EXAMPLE

In the following example, querying the /flters/:flter API returns a JSON Map
containing the
requested :flter defnition (in this example: for the :flter named
state_change_only).

],

 "runtime_assets": []

}

API Specifcation

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

}

/flters/:flter
(GET)

description Returns a flter.

example url http://hostname:8080/api/core/v2/namespaces/default/flters/state_change_only

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/flters/:flter (PUT)

http://hostname:8080/api/core/v2/namespaces/default/filters/state_change_only

API Specifcation

{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'production'"

],

 "runtime_assets": []

}

/flters/:flter
(PUT)

description Create or update a Sensu flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters/development_flter

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/flters/:flter (DELETE)

The /flters/:flter API endpoint provides HTTP DELETE access to delete a flter from Sensu
given the flter name.

EXAMPLE

http://hostname:8080/api/core/v2/namespaces/default/filters/development_filter

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/production-only

HTTP/1.1 204 No Content

The following example shows a request to delete the flter production-only , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/flters/:flter
(DELETE)

description Removes a flter from Sensu given the flter name.

example url http://hostname:8080/api/core/v2/namespaces/default/flters/production-
only

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

About Sensu

http://hostname:8080/api/core/v2/namespaces/default/filters/production-only
http://hostname:8080/api/core/v2/namespaces/default/filters/production-only

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers -H "Authorizatio

$SENSU_TOKEN"

[

 {

 "metadata": {

Handlers API

The /handlers API endpoint

/handlers (GET)

/handlers (POST)

The /handlers/:handler API endpoint

/handlers/:handler (GET)

/handlers/:handler (PUT)

/handlers/:handler (DELETE)

The /handlers API endpoint

/handlers (GET)

The /handlers API endpoint provides HTTP GET access to handler data.

EXAMPLE

The following example demonstrates a request to the /handlers API, resulting in
a JSON Array
containing handler defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/handlers/
https://docs.sensu.io/

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXX

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

]

API Specifcation

/handlers
(GET)

description Returns the list of handlers.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers

response
type

Array

response
codes

Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/handlers

[

 {

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 },

 {

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

]

/handlers (POST)

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

/handlers
(POST)

description Create a Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers

payload

response Success: 200 (OK)

http://hostname:8080/api/core/v2/namespaces/default/handlers

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack -H "Author

Bearer $SENSU_TOKEN"

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXX

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

codes Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /handlers/:handler API endpoint

/handlers/:handler (GET)

The /handlers/:handler API endpoint provides HTTP GET access to handler data for specifc
:handler defnitions, by handler name .

EXAMPLE

In the following example, querying the /handlers/:handler API returns a JSON Map
containing the
requested :handler defnition (in this example: for the :handler named
slack).

 "timeout": 0,

 "type": "pipe"

}

API Specifcation

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

/handlers/:handler
(GET)

description Returns a handler.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

 "timeout": 0,

 "type": "pipe"

}

/handlers/:handler (PUT)

API Specifcation

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

/handlers/:handler
(PUT)

description Create or update a Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers/infux-db

payload

http://hostname:8080/api/core/v2/namespaces/default/handlers/influx-db

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack

HTTP/1.1 204 No Content

}

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/handlers/:handler (DELETE)

The /handlers/:handler API endpoint provides HTTP DELETE access to delete a handler from
Sensu given the handler name.

EXAMPLE

The following example shows a request to delete the handler slack , resulting in a successful HTTP
204 No Content response.

API Specifcation

/handlers/:handler
(DELETE)

description Removes a handler from Sensu given the handler name.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)

http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

 Error: 500 (Internal Server Error)

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/health

HTTP/1.1 200 OK

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9882886658148554927,

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

]

}

Health API

The /health API endpoint

/health (GET)

The /health API endpoint provides HTTP GET access to health data for your Sensu instance.

EXAMPLE

The following example demonstrates a request to the /health API, resulting in
a JSON map
containing Sensu health data.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/health/
https://docs.sensu.io/

API Specifcation

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9882886658148554927,

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

]

}

/health (GET)

description Returns health information about the Sensu instance

example url http://hostname:8080/health

response type Map

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/health

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks -H

"Authorization: Bearer $SENSU_TOKEN"

[

 {

 "metadata": {

Hooks API

The /hooks API endpoint

/hooks (GET)

/hooks (POST)

The /hooks/:hook API endpoint

/hooks/:hook (GET)

/hooks/:hook (PUT)

/hooks/:hook (DELETE)

The /hooks API endpoint

/hooks (GET)

The /hooks API endpoint provides HTTP GET access to hook data.

EXAMPLE

The following example demonstrates a request to the /hooks API, resulting in
a JSON Array
containing hook defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/hooks/
https://docs.sensu.io/

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

 }

]

API Specifcation

[

 {

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

 },

 {

/hooks (GET)

description Returns the list of hooks.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/hooks

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false

 }

]

/hooks (POST)

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

/hooks (POST)

description Create a Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)

http://hostname:8080/api/core/v2/namespaces/default/hooks

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree -H

"Authorization: Bearer $SENSU_TOKEN"

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

 Error: 500 (Internal Server Error)

The /hooks/:hook API endpoint

/hooks/:hook (GET)

The /hooks/:hook API endpoint provides HTTP GET access to hook data for specifc :hook
defnitions, by hook name .

EXAMPLE

In the following example, querying the /hooks/:hook API returns a JSON Map
containing the
requested :hook defnition (in this example: for the :hook named
process-tree).

API Specifcation

/hooks/:hook
(GET)

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

description Returns a hook.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/hooks/:hook (PUT)

API Specifcation

/hooks/:hook
(PUT)

description Create or update a Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree

HTTP/1.1 204 No Content

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/hooks/:hook (DELETE)

The /hooks/:hook API endpoint provides HTTP DELETE access to delete a check hook from Sensu
given the hook name.

EXAMPLE

The following example shows a request to delete the hook process-tree , resulting in a successful
HTTP 204 No Content response.

API Specifcation

/hooks/:hook
(DELETE)

description Removes a hook from Sensu given the hook name.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring

Made with #monitoringlove by Sensu, Inc. © 2013-2019

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

License management API

The license management API is available in Sensu Go version 5.2.0 and later.
See the upgrade guide to
upgrade your Sensu installation, and visit the latest API documentation.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/api/license
https://docs.sensu.io/sensu-go/5.7/api/license/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators -H

"Authorization: Bearer $SENSU_TOKEN"

[

 {

 "metadata": {

Mutators API

The /mutators API endpoint

/mutators (GET)

/mutators (POST)

The /mutators/:mutator API endpoint

/mutators/:mutator (GET)

/mutators/:mutator (PUT)

/mutators/:mutator (DELETE)

The /mutators API endpoint

/mutators (GET)

The /mutators API endpoint provides HTTP GET access to mutator data.

EXAMPLE

The following example demonstrates a request to the /mutators API, resulting in
a JSON Array
containing mutator defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/mutators/
https://docs.sensu.io/

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

]

API Specifcation

[

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

/mutators (GET)

description Returns the list of mutators.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/mutators

 }

]

/mutators (POST)

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

/mutators
(POST)

description Create a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /mutators/:mutator API endpoint

http://hostname:8080/api/core/v2/namespaces/default/mutators

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-

mutator -H "Authorization: Bearer $SENSU_TOKEN"

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

/mutators/:mutator (GET)

The /mutators/:mutator API endpoint provides HTTP GET access to mutator data for specifc
:mutator defnitions, by mutator name .

EXAMPLE

In the following example, querying the /mutators/:mutator API returns a JSON Map
containing the
requested :mutator defnition (in this example: for the :mutator named
example-mutator).

API Specifcation

/mutators/:mutator
(GET)

description Returns a mutator.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-
name

response type Map

http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-name
http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-name

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/mutators/:mutator (PUT)

API Specifcation

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

/mutators/:mutator
(PUT)

description Create or update a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator

payload

http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator
http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator

HTTP/1.1 204 No Content

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/mutators/:mutator (DELETE)

The /mutators/:mutator API endpoint provides HTTP DELETE access to delete a mutator from
Sensu given the mutator name.

EXAMPLE

The following example shows a request to delete the mutator example-mutator , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/mutators/:mutator
(DELETE)

description Removes a mutator from Sensu given the mutator name.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator
http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Made with #monitoringlove by Sensu, Inc. © 2013-2019

https://twitter.com/hashtag/monitoringlove

curl http://127.0.0.1:8080/api/core/v2/namespaces -H "Authorization: Bearer

$SENSU_TOKEN"

[

 {

 "name": "default"

 },

Namespaces API

The /namespaces API endpoint

/namespaces (GET)

/namespaces (POST)

The /namespaces/:namespace API endpoint

/namespaces/:namespace (PUT)

/namespaces/:namespace (DELETE)

The /namespaces API endpoint

/namespaces (GET)

The /namespaces API endpoint provides HTTP GET access to namespace data.

EXAMPLE

The following example demonstrates a request to the /namespaces API, resulting in
a JSON Array
containing namespace defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/namespaces/
https://docs.sensu.io/

 {

 "name": "development"

 }

]

API Specifcation

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

/namespaces
(GET)

description Returns the list of namespaces.

example url http://hostname:8080/api/core/v2/namespaces

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

/namespaces (POST)

/namespaces
(POST)

http://hostname:8080/api/core/v2/namespaces

{

 "name": "development"

}

description Create a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /namespaces/:namespace API endpoint

/namespaces/:namespace (PUT)

API Specifcation

{

 "name": "development"

}

/namespaces/:namespace
(PUT)

description Create or update a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces/development

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)

http://hostname:8080/api/core/v2/namespaces
http://hostname:8080/api/core/v2/namespaces/development

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/development

HTTP/1.1 204 No Content

 Error: 500 (Internal Server Error)

/namespaces/:namespace (DELETE)

The /namespaces/:namespace API endpoint provides HTTP DELETE access to delete a namespace
from Sensu given the namespace name.

EXAMPLE

The following example shows a request to delete the namespace development , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/namespaces/:namespace
(DELETE)

description Removes a namespace from Sensu given the namespace
name.

example url http://hostname:8080/api/core/v2/namespaces/development

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/development

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

API overview

Sensu Go 5.0 includes API v2.

The Sensu backend REST API provides access to Sensu workfow confgurations and monitoring
event data.
For the Sensu agent API, see the agent reference .

URL format

Sensu API endpoints use the standard URL format
/api/{group}/{version}/namespaces/{namespace} where:

{group} is the API group. All currently existing Sensu API endpoints are of group core .

{version} is the API version. Sensu Go 5.0 uses API v2.

{namespace} is the namespace name. The examples in these API docs use the default

namespace. The Sensu API requires that the authenticated user have the correct access
permissions for the namespace specifed in the URL. If the authenticated user has the
correct cluster-wide permissions, you can leave out the /namespaces/{namespace} portion
of the URL to access Sensu resources across namespaces. See the RBAC reference for more
information about confguring Sensu users and access controls.

Data format

The API uses JSON formatted requests and responses.
In terms of sensuctl output types, the Sensu
API uses the json format, not wrapped-json .

Versioning

The Sensu Go API is versioned according to the format
v{majorVersion}{stabilityLevel}{iterationNumber} v2

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/overview/
https://docs.sensu.io/

cat ~/.confg/sensu/sensuctl/cluster|grep access_token

"access_token": "eyJhbGciOiJIUzI1NiIs...",

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/events -H

"Authorization: Bearer eyJhbGciOiJIUzI1NiIs..."

, in which is stable version 2.
The Sensu
API guarantees backward compatibility for stable versions of the API.

Sensu makes no guarantee that an alpha or beta API will be maintained for any period of time.
Alpha
versions should be considered under active development and may not be published for every
release.
Beta APIs, while more stable than alpha versions, offer similarly short-lived lifespans and also
provide no guarantee of programmatic conversions when the API is updated.

Access control

With the exception of the health API, the Sensu API requires authentication using a JWT access token.
Sensuctl provides an easy way to generate access tokens for short-lived use with the Sensu API.
The
user credentials that you use to log in to sensuctl determine your permissions to get, list, create,
update, and delete resources using the Sensu API.

To generate an API access token using sensuctl:

1. Install and log in to sensuctl.

2. Retrieve an access token for your user:

The access token should be included in the output:

3. Copy the access token into the authentication header of the API request. For example:

Access tokens last for around 15 minutes.
If your token expires, you should see a 401 Unauthorized
response from the API.

To create a new token, frst run any sensuctl command (like sensuctl event list) then repeat
the steps above.

Request size

API request bodies are limited to 0.512 MB in size.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

[

Role bindings API

The /rolebindings API endpoint

/rolebindings (GET)

/rolebindings (POST)

The /rolebindings/:rolebinding API endpoint

/rolebindings/:rolebinding (GET)

/rolebindings/:rolebinding (PUT)

/rolebindings/:rolebinding (DELETE)

The /rolebindings API endpoint

/rolebindings (GET)

The /rolebindings API endpoint provides HTTP GET access to role binding data.

EXAMPLE

The following example demonstrates a request to the /rolebindings API, resulting in
a JSON Array
containing role binding defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/role-bindings/
https://docs.sensu.io/

 {

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

 }

]

API Specifcation

[

 {

 "subjects": [

 {

 "type": "Group",

/rolebindings
(GET)

description Returns the list of role bindings.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/rolebindings

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

 }

]

/rolebindings (POST)

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

/rolebindings
(POST)

description Create a Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/rolebindings

payload

http://hostname:8080/api/core/v2/namespaces/default/rolebindings

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/readers-

group-binding -H "Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "namespace": "default"

 }

}

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /rolebindings/:rolebinding API endpoint

/rolebindings/:rolebinding (GET)

The /rolebindings/:rolebinding API endpoint provides HTTP GET access to role binding data for
specifc :rolebinding defnitions, by role binding name .

EXAMPLE

In the following example, querying the /rolebindings/:rolebinding API returns a JSON Map
containing the requested :rolebinding defnition (in this example: for the :rolebinding named
readers-group-binding).

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

API Specifcation

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

/rolebindings/:rolebinding
(GET)

description Returns a role binding.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings
group-binding

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding
http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding

 "namespace": "default"

 }

}

/rolebindings/:rolebinding (PUT)

API Specifcation

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

/rolebindings/:rolebinding
(PUT)

description Create or update a Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/rolebindings
group-binding

payload

http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding
http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/dev-binding

HTTP/1.1 204 No Content

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/rolebindings/:rolebinding (DELETE)

The /rolebindings/:rolebinding API endpoint provides HTTP DELETE access to delete a role
binding from Sensu given the role binding name.

EXAMPLE

The following example shows a request to delete the role binding dev-binding , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/rolebindings/:rolebinding
(DELETE)

description Removes a role binding from Sensu given the role binding name.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings
binding

response codes Success: 202 (Accepted)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/rolebindings/dev-binding
http://hostname:8080/api/core/v2/namespaces/default/rolebindings/dev-binding

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/roles -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

[

Roles API

The /roles API endpoint

/roles (GET)

/roles (POST)

The /roles/:role API endpoint

/roles/:role (GET)

/roles/:role (PUT)

/roles/:role (DELETE)

The /roles API endpoint

/roles (GET)

The /roles API endpoint provides HTTP GET access to role data.

EXAMPLE

The following example demonstrates a request to the /roles API, resulting in
a JSON Array
containing role defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/roles/
https://docs.sensu.io/

 {

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

 }

]

API Specifcation

[

 {

 "rules": [

 {

 "verbs": [

/roles (GET)

description Returns the list of roles.

example url http://hostname:8080/api/core/v2/namespaces/default/roles

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/roles

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

 }

]

/roles (POST)

{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

/roles (POST)

description Create a Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles

payload

http://hostname:8080/api/core/v2/namespaces/default/roles

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

 }

}

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /roles/:role API endpoint

/roles/:role (GET)

The /roles/:role API endpoint provides HTTP GET access to role data for specifc :role
defnitions, by role name .

EXAMPLE

In the following example, querying the /roles/:role API returns a JSON Map
containing the
requested :role defnition (in this example: for the :role named
read-only).

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}

API Specifcation

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

/roles/:role
(GET)

description Returns a role.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}

/roles/:role (PUT)

API Specifcation

{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

/roles/:role
(PUT)

description Create or update a Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles/event-
reader

payload

http://hostname:8080/api/core/v2/namespaces/default/roles/event-reader
http://hostname:8080/api/core/v2/namespaces/default/roles/event-reader

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/ready-only

HTTP/1.1 204 No Content

 }

}

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/roles/:role (DELETE)

The /roles/:role API endpoint provides HTTP DELETE access to delete a role from Sensu given
the role name.

EXAMPLE

The following example shows a request to delete the role read-only , resulting in a successful HTTP
204 No Content response.

API Specifcation

/roles/:role
(DELETE)

description Removes a role from Sensu given the role name.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/ready-
only

http://hostname:8080/api/core/v2/namespaces/default/roles/ready-only
http://hostname:8080/api/core/v2/namespaces/default/roles/ready-only

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Silencing API

The /silenced API endpoint

/silenced (GET)

/silenced (POST)

The /silenced/:silenced API endpoint

/silenced/:silenced (GET)

/silenced/:silenced (PUT)

/silenced/:silenced (DELETE)

The /silenced/subscriptions/:subscription API endpoint

/silenced/subscriptions/:subscription (GET)

The /silenced/checks/:check API endpoint

/silenced/checks/:check (GET)

The /silenced API endpoint

/silenced (GET)

The /silenced API endpoint provides HTTP GET access to silencing entry data.

EXAMPLE

The following example demonstrates a request to the /silenced API, resulting in
a JSON Array
containing silencing entry defnitions.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/silenced/
https://docs.sensu.io/

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

 }

]

API Specifcation

[

 {

 "metadata": {

/silenced (GET)

description Returns the list of silencing entries.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/silenced

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

 }

]

/silenced (POST)

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

}

/silenced
(POST)

description Create a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced

payload

http://hostname:8080/api/core/v2/namespaces/default/silenced

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /silenced/:silenced API endpoint

/silenced/:silenced (GET)

The /silenced/:silenced API endpoint provides HTTP GET access to silencing entry data for
specifc :silenced defnitions, by silencing entry name .

EXAMPLE

In the following example, querying the /silenced/:silenced API returns a JSON Map
containing the
requested silencing entry defnition (in this example: for the silencing entry named
linux:check-cpu).
Silencing entry names are generated from the combination of a subscription

name and check name.

}

API Specifcation

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

}

/silenced/:silenced
(GET)

description Returns a silencing entry.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-
cpu

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/silenced/:silenced (PUT)

http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

API Specifcation

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

}

/silenced/:silenced
(PUT)

description Create or update a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-
cpu

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/silenced/:silenced (DELETE)

The /silenced/:silenced API endpoint provides HTTP DELETE access to delete a silencing entry
by silencing entry name .

EXAMPLE

http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

HTTP/1.1 204 No Content

In the following example, querying the /silenced/:silenced API to delete the the silencing entry
named
linux:check-cpu results in a successful 204 No Content response.

API Specifcation

/silenced/:silenced
(DELETE)

description Removes a silencing entry from Sensu given the silencing entry name.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-
cpu

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /silenced/subscriptions/:subscription API endpoint

/silenced/subscriptions/:subscription (GET)

The /silenced/subscriptions/:subscription API endpoint provides HTTP GET access to
silencing entry data by subscription name .

EXAMPLE

http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/subscriptions/linux

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

 }

]

In the following example, querying the silenced/subscriptions/:subscription API returns a
JSON Array
containing the requested silencing entries for the given subscription (in this example: for
the linux subscription).

API Specifcation

/silenced/
subscriptions/
:subscription
(GET)

description Returns all silencing entries for the specifed subscription.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/subscriptions/linu

response type Array

http://hostname:8080/api/core/v2/namespaces/default/silenced/subscriptions/linux

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

 }

]

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

The /silenced/checks/:check API endpoint

/silenced/checks/:check (GET)

The /silenced/checks/:check API endpoint provides HTTP GET access to silencing entry data by
check name .

EXAMPLE

In the following example, querying the silenced/checks/:check API returns a JSON Array
containing
the requested silencing entries for the given check (in this example: for the check-cpu check).

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/checks/check-cpu

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "linux",

 "begin": 1542671205

 }

]

API Specifcation

[

/silenced/checks/
:check (GET)

description Returns all silencing entries for the specifed check.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/checks/chec
cpu

response type Array

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/silenced/checks/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/checks/check-cpu

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "linux",

 "begin": 1542671205

 }

]

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise

Made with #monitoringlove by Sensu, Inc. © 2013-2019

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Tessen API

The Tessen API is available in Sensu Go version 5.5.0 and later.
See the upgrade guide to upgrade your
Sensu installation, and visit the latest API documentation.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/api/tessen
https://docs.sensu.io/sensu-go/5.7/api/tessen/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Users API

The /users API endpoint

/users (GET)

/users (POST)

The /users/:user API endpoint

/users/:user (GET)

/users/:user (PUT)

/users/:user (DELETE)

The /users/:user/password API endpoint

/users/:user/password (PUT)

The /users/:user/reinstate API endpoint

/users/:user/reinstate (PUT)

The /users/:user/groups API endpoint

/users/:user/groups (DELETE)

The /users/:user/groups/:group API endpoints

/users/:user/groups/:group (PUT)

/users/:user/groups/:group (DELETE)

The /users API endpoint

/users (GET)

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/api/users/
https://docs.sensu.io/

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users

HTTP/1.1 200 OK

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

],

 "disabled": false

 },

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

 "disabled": false

 }

]

The /users API endpoint provides HTTP GET access to user data.

EXAMPLE

The following example demonstrates a request to the /users API, resulting in
a JSON Array
containing user defnitions.

API Specifcation

/users (GET)

description Returns the list of users.

example url http://hostname:8080/api/core/v2/users

http://hostname:8080/api/core/v2/users

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

],

 "disabled": false

 },

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

 "disabled": false

 }

]

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

/users (POST)

The /users API endpoint provides HTTP POST access to create a user.

EXAMPLE

The following example demonstrates a POST request to the /users API to create the user alice ,
resulting in an HTTP 200 response and the created user defnition.

-d '{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users

HTTP/1.1 200 OK

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

API Specifcation

{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}

/users (POST)

description Create a Sensu user.

example URL http://hostname:8080/api/core/v2/users

payload

http://hostname:8080/api/core/v2/users

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 200 OK

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

payload parameters username (string, required)
password (string, required): Must have at least eight characters
groups (array): Sets of shared permissions applicable to this

user
disabled : When set to true , invalidates user credentials and

permissions

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /users/:user API endpoint

/users/:user (GET)

The /users/:user API endpoint provides HTTP GET access to user data for a specifc user by
username .

EXAMPLE

In the following example, querying the /users/:user API returns a JSON Map
containing the
requested :user defnition (in this example: for the alice user).

curl -X PUT \

API Specifcation

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

/users/:user
(GET)

description Returns a user given the username as a URL parameter.

example url http://hostname:8080/api/core/v2/users/alice

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/users/:user (PUT)

EXAMPLE

The following example demonstrates a PUT request to the /users API to update the user alice ,
in this case to reset their password, resulting in an HTTP 200 response and the updated user
defnition.

http://hostname:8080/api/core/v2/users/alice

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "reset-password",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 200 OK

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

API Specifcation

{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "reset-password",

 "disabled": false

}

/users/:user
(PUT)

description Create or update a Sensu user given the username.

example URL http://hostname:8080/api/core/v2/users/alice

payload

http://hostname:8080/api/core/v2/users/alice

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 204 No Content

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/users/:user (DELETE)

EXAMPLE

In the following example, an HTTP DELETE request is submitted to the /users/:user API to disable
the user alice , resulting in a successful 204 (No Content) HTTP response code.

API Specifcation

/users/:user
(DELETE)

description Disables a user given the username as a URL parameter.

example url http://hostname:8080/api/core/v2/users/alice

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/users/alice

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "password": "newpassword"

}' \

http://127.0.0.1:8080/api/core/v2/users/alice/password

HTTP/1.1 200 OK

The /users/:user/password API endpoint

/users/:user/password (PUT)

The /users/:user/password API endpoint provides HTTP PUT access to update a user’s password.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /users/:user/password API to
update the password for the user alice , resulting in a 200 (OK) HTTP response code.

API Specifcation

{

 "username": "admin",

 "password": "newpassword"

/users/:user/password
(PUT)

description Update the password for a Sensu user.

example URL http://hostname:8080/api/core/v2/users/alice/password

payload

http://hostname:8080/api/core/v2/users/alice/password

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

http://127.0.0.1:8080/api/core/v2/users/alice/reinstate

HTTP/1.1 200 OK

}

payload parameters username (string, required): the username for the
Sensu user
password (string, required): the user’s new password

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /users/:user/reinstate API endpoint

/users/:user/reinstate (PUT)

The /users/:user/reinstate API endpoint provides HTTP PUT access to re-enable a disabled
user.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /users/:user/reinstate API to
enable the disabled user alice , resulting in a 200 (OK) HTTP response code.

API Specifcation

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups

HTTP/1.1 204 No Content

/users/:user/reinstate
(PUT)

description Reinstate a disabled user.

example URL http://hostname:8080/api/core/v2/users/alice/reinstate

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /users/:user/groups API endpoint

/users/:user/groups (DELETE)

The /users/:user/groups API endpoint provides HTTP DELETE access to remove a user from all
groups.

EXAMPLE

In the following example, an HTTP DELETE request is submitted to the /users/:user/groups API
to remove the user alice from all groups within Sensu, resulting in a successful 204 (No Content)
HTTP response code.

API Specifcation

/users/:user/groups

http://hostname:8080/api/core/v2/users/alice/reinstate

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

HTTP/1.1 204 No Content

(DELETE)

description Removes a user from all groups.

example url http://hostname:8080/api/core/v2/users/alice/groups

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /users/:user/groups/:group API endpoints

/users/:user/groups/:group (PUT)

The /users/:user/groups/:group API endpoint provides HTTP PUT access to assign a user to a
group.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /users/:user/groups/:group

API to add the user alice to the group ops , resulting in a successful 204 (No Content) HTTP
response code.

API Specifcation

/users/:user/groups/:group
(PUT)

http://hostname:8080/api/core/v2/users/alice/groups

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

HTTP/1.1 204 No Content

description Add a user to a group.

example URL http://hostname:8080/api/core/v2/users/alice/groups/ops

payload

response codes Success: 204 (No Content)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/users/:user/groups/:group (DELETE)

The /users/:user/groups/:group API endpoint provides HTTP DELETE access to remove a user
from a group.

EXAMPLE

In the following example, an HTTP DELETE request is submitted to the
/users/:user/groups/:group API to remove the user alice from the group ops , resulting in a

successful 204 (No Content) HTTP response code.

API Specifcation

/users/:user/groups/:group
(DELETE)

http://hostname:8080/api/core/v2/users/alice/groups/ops

description Removes a user from a group.

example url http://hostname:8080/api/core/v2/users/alice/groups/ops

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

http://hostname:8080/api/core/v2/users/alice/groups/ops
https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

sensuctl CLI

Quickstart

Reference

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/sensuctl/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Confgure and log in with defaults

sensuctl confgure

? Sensu Backend URL: http://127.0.0.1:8080

? Username: admin

? Password: P@ssw0rd!

Create resources from a fle containing JSON resource defnitions

sensuctl create --fle flename.json

See monitored entities

sensuctl entity list

See monitoring events

sensuctl event list

Edit a check named check-cpu

sensuctl edit check check-cpu

See the JSON confguration for a check named check-cpu

sensuctl check info check-cpu --format wrapped-json

Sensuctl quick reference

Quick reference

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/sensuctl/quickstart/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

See command and global fags

sensuctl --help

See subcommands and fags

sensuctl check --help

See usage and fags

sensuctl check delete --help

Sensuctl

First-time setup

Managing sensuctl

Creating resources

Updating resources

Managing resources

Time formats

Shell auto-completion

Confg fles

Sensuctl is a command line tool for managing resources within Sensu. It works by
calling Sensu’s
underlying API to create, read, update, and delete resources,
events, and entities. Sensuctl is available
for Linux, macOS, and Windows.
See the installation guide to install and confgure sensuctl.

Geting help

Sensuctl supports a --help fag for each command and subcommand.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/sensuctl/reference/
https://docs.sensu.io/

sensuctl confgure

? Sensu Backend URL: http://127.0.0.1:8080

? Username: admin

? Password: P@ssw0rd!

? Namespace: default

? Preferred output format: tabular

First-time setup

To set up sensuctl, run sensuctl confgure to log in to sensuctl and connect to the Sensu
backend.

When prompted, input the Sensu backend URL and your Sensu access credentials.

Sensu backend URL

The HTTP or HTTPS URL where sensuctl can connect to the Sensu backend server, defaulting to
http://127.0.0.1:8080 .
When connecting to a Sensu cluster, connect sensuctl to any single

backend in the cluster.
For more information on confguring the Sensu backend URL, see the backend
reference.

Username | password | namespace

By default, Sensu includes a user named admin with password P@ssw0rd! and a default
namespace.
Your ability to get, list, create, update, and delete resources with sensuctl depends on the
permissions assigned to your Sensu user.
For more information about confguring Sensu access
control, see the RBAC reference .

Preferred output format

Sensuctl supports the following output formats:

sensuctl confgure -n --url http://127.0.0.1:8080 --username admin --password

P@ssw0rd! --format tabular

sensuctl confg view

api-url: http://127.0.0.1:8080

tabular : user-friendly, columnar format

wrapped-json : accepted format for use with sensuctl create

yaml : accepted format for use with sensuctl create

json : format used by the Sensu API

Once logged in, you can change the output format using sensuctl confg set-format or set it per
command using the --format fag.

Non-interactive

You can run sensuctl confgure non-interactively using the -n (--non-interactive) fag.

Managing sensuctl

The sencutl confg command lets you view the current sensuctl confguration and set the
namespace and output format.

View sensuctl confg

To view the active confguration for sensuctl:

Sensuctl confguration includes the Sensu backend url, Sensu edition (Core or Enterprise), the default
output format for the current user, and the default namespace for the current user.

edition: core

format: wrapped-json

namespace: default

sensuctl confg set-format tabular

sensuctl confg set-namespace development

sensuctl logout

sensuctl confgure

Set output format

You can use the set-format command to change the default output format for the current user.
For example, to change the output format to tabular :

Set namespace

You can use the set-namespace command to change the default namespace for the current user.
For more information about confguring Sensu access control, see the RBAC reference .
For example,
to change the default namespace to development :

Log out of sensuctl

To log out of sensuctl:

To log back in:

sensuctl version

--api-url string host URL of Sensu installation

--cache-dir string path to directory containing cache & temporary fles

--confg-dir string path to directory containing confguration fles

--namespace string namespace in which we perform actions (default:

"default")

{

 "type": "CheckConfg",

 "spec": {

 "command": "check-http.go -u https://dean-learner.book",

 "subscriptions": ["demo"],

 "interval": 15,

View the sensuctl version number

To display the current version of sensuctl:

Global fags

Global fags modify settings specifc to sensuctl, such as the Sensu backend URL and namespace.
You can use global fags with most sensuctl commands.

Creating resources

The sensuctl create command allows you to create or update resources by reading from STDIN
or a fag confgured fle (-f).
The create command accepts Sensu resource defnitions in
wrapped-json and yaml .
Both JSON and YAML resource defnitions wrap the contents of the

resource in spec and identify the resource type (see below for an example, and this table for a list
of supported types).
See the reference docs for information about creating resource defnitions.

For example, the following fle my-resources.json specifes two resources: a marketing-site
check and a slack handler.

 "handlers": ["slack"],

 "metadata" : {

 "name": "marketing-site",

 "namespace": "default"

 }

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXX

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

sensuctl create --fle my-resources.json

NOTE: Commas cannot be included between JSON resource defnitions when using
sensuctl create .

To create all resources from my-resources.json using sensuctl create :

cat my-resources.json | sensuctl create

sensuctl edit handler slack

Or:

sensuctl create resource types

sensuctl create
types

AdhocRequest adhoc_request Asset asset

CheckConfg check_confg ClusterRole cluster_role

ClusterRoleBinding cluster_role_binding Entity entity

Event event EventFilter event_flter

Handler handler Hook hook

HookConfg hook_confg Mutator mutator

Namespace namespace Role role

RoleBinding role_binding Silenced silenced

Updating resources

Sensuctl allows you to update resource defnitions using a text editor.
To use sensuctl edit , specify
the resource type and resource name.

For example, to edit a handler named slack using sensuctl edit :

sensuctl edit resource types

sensuctl edit
types

asset check cluster cluster-role

cluster-role-

binding

entity event flter

handler hook mutator namespace

role role-binding silenced user

Managing resources

Sensuctl provides the following commands to manage Sensu resources.

sensuctl asset

sensuctl check

sensuctl cluster

sensuctl cluster-role

sensuctl cluster-role-binding

sensuctl entity

sensuctl event

sensuctl flter

sensuctl handler

sensuctl hook

sensuctl mutator

sensuctl namespace

sensuctl role

list list resources

info NAME show detailed resource information given resource

name

delete NAME delete resource given resource name

sensuctl check list

sensuctl check list --all-namespaces

sensuctl check list --format wrapped-json > my-resources.json

sensuctl check info check-cpu --format wrapped-json

sensuctl role-binding

sensuctl silenced

sensuctl user

Subcommands

Sensuctl provides a standard set of list, info, and delete operations for most resource types.

For example, to list all monitoring checks:

To list checks from all namespaces:

To write all checks to my-resources.json in wrapped-json format:

To see the defnition for a check named check-cpu in wrapped-json format:

In addition to the standard operations, commands may support subcommands or fags that allow
you to take special action based on the resource type; the following sections call out those resource-

sensuctl check execute NAME

sensuctl check execute check-cpu --reason "giving a sensuctl demo"

sensuctl check execute check-cpu --subscriptions demo,webserver

health get sensu health status

member-add add cluster member to an existing cluster, with comma-separated

peer addresses

member-list list cluster members

member-remove remove cluster member by ID

member-update update cluster member by ID with comma-separated peer addresses

specifc operations.
For a list of subcommands specifc to a resource, run sensuctl TYPE --help .

sensuctl check

In addition to the standard subcommands, sensuctl provides a command to execute a check on
demand, given the check name.

For example, the following command executes the check-cpu check with an attached message:

You can also use the --subscriptions fag to override the subscriptions in the check defnition:

sensuctl cluster

The sensuctl cluster command lets you manage a Sensu cluster using the following
subcommands.

To view cluster members:

sensuctl cluster member-list

sensuctl cluster health

sensuctl event resolve ENTITY CHECK

sensuctl event resolve webserver1 check-http

To see the health of your Sensu cluster:

sensuctl event

In addition to the standard subcommands, sensuctl provides a command to resolve an event.

For example, the following command manually resolves an event created by the entity webserver1

and the check check-http :

sensuctl namespace

See the RBAC reference for information about using access control with namespaces.

sensuctl user

See the RBAC reference for information about local user management with sensuctl.

Time formats

Sensuctl supports multiple time formats depending on the manipulated resource.
Supported
canonical time zone IDs are defned in the tz database.

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

brew install bash-completion

if [-f $(brew --prefx)/etc/bash_completion]; then

. $(brew --prefx)/etc/bash_completion

f

source <(sensuctl completion bash)

WARNING: Canonical zone IDs (i.e. America/Vancouver) are not supported on
Windows.

Dates with time

Full dates with time are used to specify an exact point in time, which can be
used with silencing
entries, for example. The following formats are supported:

RFC3339 with numeric zone offset: 2018-05-10T07:04:00-08:00 or
 2018-05-
10T15:04:00Z

RFC3339 with space delimiters and numeric zone offset: 2018-05-10 07:04:00
-08:00

Sensu alpha legacy format with canonical zone ID: May 10 2018 7:04AM
America/Vancouver

Shell auto-completion

Installation (Bash Shell)

Make sure bash completion is installed. If you use a current Linux
in a non-minimal installation, bash
completion should be available.
On macOS, install with:

Then add the following to your ~/.bash_profle :

Once bash-completion is available, add the following to your ~/.bash_profle :

source ~/.bash_profle

source <(sensuctl completion zsh)

source ~/.zshrc

check confgure event user

asset completion entity handler

create delete import list

You can now source your ~/.bash_profle or launch a new terminal to utilize completion.

Installation (ZSH)

Add the following to your ~/.zshrc :

You can now source your ~/.zshrc or launch a new terminal to utilize completion.

Usage

sensuctl Tab

sensuctl check Tab

Confguration fles

During confguration, sensuctl creates confguration fles that contain information for connecting to

cat .confg/sensu/sensuctl/profle

{

 "format": "tabular",

 "namespace": "demo"

}

cat .confg/sensu/sensuctl/cluster

{

 "api-url": "http://localhost:8080",

 "trusted-ca-fle": "",

 "insecure-skip-tls-verify": false,

 "access_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "expires_at": 1550082282,

 "refresh_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}

your Sensu Go deployment. You can fnd them at $HOME/.confg/sensu/sensuctl/profle and
$HOME/.confg/sensu/sensuctl/profle . For example:

These are useful if you want to know what cluster you’re connecting to, or what namespace you’re
currently confgured to use.

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,

Made with #monitoringlove by Sensu, Inc. © 2013-2019

and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Reference

Agent

Assets

Backend

Checks

Entities

Events

Filters

Handlers

Hooks

License

Mutators

Rbac

Sensu-Query-Expressions

Silencing

Tessen

Tokens

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Sensu agent

Installation

Creating events using service checks

Creating events using the StatsD listener

Creating events using the agent socket (deprecated)

Keepalive monitoring

Service management

Starting and stopping the service

Registration and deregistration

Clustering

Time synchronization

Confguration

API confguration

Ephemeral agent confguration

Keepalive confguration

Security confguration

Socket confguration

StatsD confguration

The Sensu agent is a lightweight client that runs on the infrastructure components you want to
monitor.
Agents register with the Sensu backend as monitoring entities with type: "agent" .
Agent
entities are responsible for creating check and metrics events to send to the backend event pipeline.

All Platforms

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/agent/
https://docs.sensu.io/

The Sensu agent is available for Linux, macOS, and Windows.
See the installation guide to install the
agent.

Creating monitoring events using service checks

Sensu’s use of the publish/subscribe pattern of communication allows for automated registration
and deregistration of ephemeral systems.
At the core of this model are Sensu agent subscriptions.

Each Sensu agent has a defned set of subscriptions , a list of roles and responsibilities assigned
to the system (for example: a webserver or database).
These subscriptions determine which
monitoring checks are executed by the agent.
Agent subscriptions allow Sensu to request check
executions on a group of systems at a time, instead of a traditional 1:1 mapping of confgured hosts
to monitoring checks.
In order for an agent to execute a service check, you must specify the same
subscription in the agent confguration and the check defnition.

After receiving a check request from the Sensu backend, the agent:

1. Applies any tokens matching attribute values in the check defnition.

2. Fetches assets and stores them in its local cache. By default, agents cache asset data at
/var/cache/sensu/sensu-agent (C:\\ProgramData\sensu\cache\sensu-agent on

Windows systems) or as specifed by the the cache-dir fag.

3. Executes the check command .

4. Executes any hooks specifed by the check based on the exit status.

5. Creates an event containing information about the applicable entity, check, and metric.

Subscription confguration

To confgure subscriptions for an agent, set the subscriptions fag.
To confgure subscriptions for a
check, set the check defnition attribute subscriptions .

In addition to the subscriptions defned in the agent confguration, Sensu agent entities also subscribe
automatically to a subscription matching their entity name .
For example, an agent entity with the
name: "i-424242" subscribes to check requests with the subscription entity:i-424242 .
This

makes it possible to generate ad-hoc check requests targeting specifc entities via the API.

Proxy entities

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

}' \

Sensu proxy entities allow Sensu to monitor external resources on systems or devices where a
Sensu agent cannot be installed (such a network switch).
Unlike agent entities, proxy entity defnitions
are stored by the Sensu backend.
When the backend requests a check that includes a
proxy_entity_name , the agent includes the provided entity information in the event data in place

of the agent entity data.
See the entity reference and the guide to monitoring external resources for
more information about monitoring proxy entities.

Creating monitoring events using the agent API

The Sensu agent API allows external sources to send monitoring data to Sensu without needing to
know anything about Sensu’s internal implementation.
The agent API listens on the address and port
specifed by the API confguration fags; only unsecured HTTP (no HTTPS) is supported at this time.
Any
requests for unknown endpoints result in a 404 Not Found response.

/events (POST)

The /events API provides HTTP POST access to publish monitoring events to the Sensu backend
pipeline via the agent API.

Example

In the following example, an HTTP POST is submitted to the /events API, creating an event for a
check named check-mysql-status with the output could not connect to mysql and a status
of 1 (warning), resulting in a 201 (Created) HTTP response code.

http://127.0.0.1:3031/events

HTTP/1.1 201 Created

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

PRO TIP: You can use the agent API /events endpoint to create proxy entities by
including a proxy_entity_name attribute within the check scope.

Detecting silent failures

You can use the Sensu agent API in combination with the check time-to-live attribute (TTL) to detect
silent failures, creating what’s commonly referred to as a “dead man’s switch” (source: Wikipedia).
By
using check TTLs, Sensu is able to set an expectation that a Sensu agent will publish additional
events for a check within the period of time specifed by the TTL attribute.
If a Sensu agent fails to
publish an event before the check TTL expires, the Sensu backend creates an event with a status of
1 (warning) to indicate the expected event was not received.
For more information on check TTLs,

see the the check reference .

A great use case for the Sensu agent API is to enable tasks which run outside of Sensu’s check
scheduling to emit events. Using the check TTL attribute, these events create a dead man’s switch,
ensuring that if the task fails for any reason, the lack of an “all clear” event from the task notifes
operators of a silent failure which might otherwise be missed.
If an external source sends a Sensu
event with a check TTL to the Sensu agent API, Sensu expects another event from the same external
source before the TTL expires.

The following is an example of external event input via the Sensu agent API using a check TTL to
create a dead man’s switch for MySQL backups.
If we assume that a MySQL backup script runs
periodically and that we expect the job to take a little less than 7 hours to complete, in the case
where the job completes successfully, we’d like a record of it but don’t need to be alerted. If the job
fails for some reason, or continues running past the expected 7 hours, we’d like to be alerted. In the
following example, the script sends an event which tells the Sensu backend to expect an additional
event with the same name within 7 hours of the frst event.

http://en.wikipedia.org/wiki/Dead_man%27s_switch

 "status": 0,

 "output": "mysql backup initiated",

 "ttl": 25200

 }

}' \

http://127.0.0.1:3031/events

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

 "status": 0,

 "output": "mysql backup ran successfully!"

 }

}' \

http://127.0.0.1:3031/events

With this initial event submitted to the agent API, we have recorded in the Sensu backend that our
script started, and we’ve confgured the dead man’s switch so that we’ll be alerted if the job fails or
runs too long. Although it is possible for our script to handle errors gracefully and emit additional
monitoring events, this approach allows us to worry less about handling every possible error case, as
the lack of additional events before the 7 hour period elapses results in an alert.

If our backup script runs successfully, we can send an additional event without the TTL attribute,
which removes the dead man’s switch:

By omitting the TTL attribute from this event, the dead man’s switch being monitored by the Sensu
backend is also removed, effectively sounding the “all clear” for this iteration of the task.

API specifcation

/events (POST)

description Accepts JSON event data and passes the event to the Sensu backend

{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

}

event pipeline for processing

example url http://hostname:3031/events

payload example

payload attributes check (required): All check data must be within the check

scope.
metadata (required): The check scope must contain a
metadata scope.
name (required): The metadata scope must contain the
name attribute with a string representing the name of the

monitoring check.
Any other attributes supported by the Sensu check specifcation
(optional)

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/healthz (GET)

The /healthz API provides HTTP GET access to the status of the Sensu agent via the agent API.

Example

In the following example, an HTTP GET is submitted to the /healthz API:

http://hostname:3031/events

curl http://127.0.0.1:3031/healthz

ok

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

Resulting in a healthy response:

API specifcation

/healthz (GET)

description Returns ok if the agent is active and connected to a Sensu backend;
returns sensu backend unavailable if the agent is unable to connect
to a backend.

example url http://hostname:3031/healthz

Creating monitoring events using the StatsD listener

Sensu agents include a listener to send StatsD metrics to the event pipeline.
By default, Sensu agents
listen on UDP socket 8125 (TCP on Windows systems) for messages that follow the StatsD line
protocol and send metric events for handling by the Sensu backend.

For example, you can use the Netcat utility to send metrics to the StatsD listener:

Metrics received through the StatsD listener are not stored by Sensu, so
it’s important to confgure
event handlers.

StatsD line protocol

http://hostname:3031/healthz
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd

<metricname>:<value>|<type>

Start an agent that sends StatsD metrics to InfuxDB

sensu-agent --statsd-event-handlers infux-db

Start an agent with a customized address and fush interval

sensu-agent --statsd-event-handlers infux-db --statsd-fush-interval 1 --statsd-

metrics-host 123.4.5.6 --statsd-metrics-port 8125

The Sensu StatsD listener accepts messages formatted according to the StatsD line protocol:

For more information, see the StatsD documentation.

Confguring the StatsD listener

To confgure the StatsD listener, specify the statsd-event-handlers confguration fag in the agent
confguration, and start the agent.

You can use the StatsD confguration fags to change the default settings for the StatsD listener
address, port, and fush interval.

Creating monitoring events using the agent TCP and
UDP sockets

NOTE: The agent TCP and UDP sockets are deprecated in favor of the agent events API.

Sensu agents listen for external monitoring data using TCP and UDP sockets.
The agent sockets
accept JSON event data and pass the event to the Sensu backend event pipeline for processing.
The
TCP and UDP sockets listen on the address and port specifed by the socket confguration fags.

Using the TCP socket

https://github.com/etsy/statsd
https://github.com/etsy/statsd#key-concepts

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

/dev/tcp/localhost/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc

localhost 3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

/dev/udp/127.0.0.1/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc -u -

v 127.0.0.1 3030

The following is an example demonstrating external monitoring data input via the Sensu agent TCP
socket.
The example uses Bash’s built-in /dev/tcp fle to communicate with the Sensu agent socket.

You can also use the Netcat utility to send monitoring data to the agent socket:

Using the UDP socket

The following is an example demonstrating external monitoring data input via the Sensu agent UDP
socket.
The example uses Bash’s built-in /dev/udp fle to communicate with the Sensu agent socket.

You can also use the Netcat utility to send monitoring data to the agent socket:

Socket event format

The agent TCP and UDP sockets use a special event data format designed for backwards
compatibility with Sensu 1.x check results.
Attributes specifed in socket events appear in the resulting
event data passed to the Sensu backend.

Example socket input: Minimum required atributes

http://nc110.sourceforge.net/
http://nc110.sourceforge.net/
https://docs.sensu.io/sensu-core/latest/reference/checks/#check-result-specification

{

 "name": "check-mysql-status",

 "status": 1,

 "output": "error!"

}

{

 "name": "check-http",

 "status": 1,

 "output": "404",

 "client": "sensu-docs-site",

 "executed": 1550013435,

 "duration": 1.903135228

}

Example socket input: All atributes

Socket event specifcation

The Sensu agent socket ignores any attributes not included in this specifcation.

"name": "check-mysql-status"

name

description The check name

required true

type String

example

"status": 0

status

description The check execution exit status code. An exit status code of 0 (zero)
indicates OK , 1 indicates WARNING , and 2 indicates CRITICAL ;
exit status codes other than 0 , 1 , or 2 indicate an UNKNOWN or
custom status.

required true

type Integer

example

"output": "CheckHttp OK: 200, 78572 bytes"

output

description The output produced by the check command .

required true

type String

example

client

description The name of the Sensu entity associated with the event. The client

attribute gives you the ability to tie the event to a proxy entity while
providing compatibility with Sensu 1.x check results. Use this attribute to
specify the name of the proxy entity tied to the event.

required false

default The agent entity receiving the event data

https://docs.sensu.io/sensu-core/latest/reference/checks/#check-result-specification

"client": "sensu-docs-site"

type String

example

"executed": 1458934742

executed

description The time the check was executed, in seconds since the Unix epoch.

required false

default The time the event was received by the agent

type Integer

example

"duration": 1.903135228

duration

description The amount of time (in seconds) it took to execute the check.

required false

type Float

example

command

description The command executed to produce the event. You can use this
attribute to add context to the event data; Sensu does not execute the

"command": "check-http.rb -u https://sensuapp.org"

command included in this attribute.

required false

type String

example

"interval": 60

interval

description The interval used to produce the event. You can use this attribute to add
context to the event data; Sensu does not act on the value provided in
this attribute.

required false

default 1

type Integer

example

Keepalive monitoring

Sensu keepalives are the heartbeat mechanism used to ensure that all registered agents are
operational and able to reach the Sensu backend.
Sensu agents publish keepalive events containing
entity confguration data to the Sensu backend according to the interval specifed by the
keepalive-interval fag.
If a Sensu agent fails to send keepalive events over the period specifed

by the keepalive-timeout fag, the Sensu backend creates a keepalive alert in the Sensu
dashboard.
You can use keepalives to identify unhealthy systems and network partitions, send
notifcations, trigger auto-remediation, and other useful actions.

NOTE: Keepalive monitoring is not supported for proxy entities, as they are inherently

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "keepalive",

 "namespace": "default"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack"

]

 }

}

unable to run a Sensu agent.

Handling keepalive events

You can connect keepalive events to your monitoring workfows using a keepalive handler.
Sensu
looks for an event handler named keepalive and automatically uses it to process keepalive events.

Let’s say you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events .
To process keepalive events using the Slack pipeline, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration looks like this:

Operation

Starting the service

Use the sensu-agent tool to start the agent and apply confguration fags.

To start the agent with confguration fags:

sensu-agent start --subscriptions disk-checks --log-level debug

sensu-agent start --help

sudo service sensu-agent start

sudo service sensu-agent stop

sudo service sensu-agent restart

To see available confguration fags and defaults:

If no confguration fags are provided, the agent loads confguration from /etc/sensu/agent.yml by
default.

To start the agent using a service manager:

Linux

Stopping the service

To stop the agent service using a service manager:

Linux

Restarting the service

You must restart the agent to implement any confguration updates.

To restart the agent using a service manager:

Linux

sudo systemctl enable sensu-agent

sudo systemctl disable sensu-agent

service sensu-agent status

sensu-agent version

Enabling on boot

To enable the agent to start on system boot:

Linux

To disable the agent from starting on system boot:

NOTE: On older distributions of Linux, use sudo chkconfg sensu-server on to enable the
agent and sudo chkconfg sensu-server off to disable.

Geting service status

To see the status of the agent service using a service manager:

Linux

Geting service version

To get the current agent version using the sensu-agent tool:

Show sensu-agent commands

sensu-agent help

Show options for the sensu-agent start subcommand

sensu-agent start --help

Geting help

The sensu-agent tool provides general and command-specifc help fags:

Clustering

Agents can connect to a Sensu cluster by specifying any Sensu backend URL in the cluster in the
backend-url confguration fag. For more information about clustering, see Sensu backend

datastore confguration fags and the guide to running a Sensu cluster.

Time synchronization

System clocks between agents and the backend should be synchronized to a central NTP server.
Out of sync system time may cause issues with keepalive, metric, and check alerts.

Registration

In practice, agent registration happens when a Sensu backend processes an agent keepalive event
for an agent that is not already registered in the Sensu agent registry (based on the confgured agent
name).
This agent registry is stored in the Sensu backend, and is accessible via sensuctl entity

list .

All Sensu agent data provided in keepalive events gets stored in the agent registry and used to add
context to Sensu events and detect Sensu agents in an unhealthy state.

Registration events

If a Sensu event handler named registration is confgured, the Sensu backend creates and
process an event for agent registration, applying any confgured flters and mutators before executing
the confgured handler.

PRO TIP: Use a handler set to execute multiple handlers in response to registration
events.

Registration events are useful for executing one-time handlers for new Sensu agents.
For example,
registration event handlers can be used to update external confguration management databases
(CMDBs) such as ServiceNow.

To confgure a registration event handler, please refer to the Sensu event handler documentation for
instructions on creating a handler named registration .

WARNING: Registration events are not stored in the event registry, so they are not
accessible via the Sensu API; however, all registration events are logged in the Sensu
backend log.

Deregistration events

Similarly to registration events, the Sensu backend can create and process a deregistration event
when the Sensu agent process stops.
You can use deregistration events to trigger a handler that
updates external CMDBs or performs an action to update ephemeral infrastructures.
To enable
deregistration events, use the deregister fag and specify the event handler using the
deregistration-handler fag.
You can specify a deregistration handler per agent using the
deregistration-handler agent fag or by setting a default for all agents using the
deregistration-handler backend confguration fag.

Confguration

You can specify the agent confguration using a /etc/sensu/agent.yml fle or using
sensu-agent start command-line fags.
See the example confg fle provided with Sensu at
/usr/share/doc/sensu-go-agent-5.0.0/agent.yml.example .
Confguration provided via

command-line fags overrides attributes specifed in a confguration fle.
The agent loads confguration
upon startup, so you must restart the agent for any confguration updates to take effect.

Confguration summary

https://en.wikipedia.org/wiki/Configuration_management_database
https://en.wikipedia.org/wiki/Configuration_management_database
https://www.servicenow.com/products/it-operations-management.html

$ sensu-agent start --help

start the sensu agent

Usage:

 sensu-agent start [fags]

Flags:

 --api-host string address to bind the Sensu client HTTP

API to (default "127.0.0.1")

 --api-port int port the Sensu client HTTP API listens

on (default 3031)

 --backend-url strings ws/wss URL of Sensu backend server (to

specify multiple backends use this fag multiple times) (default

[ws://127.0.0.1:8081])

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-agent")

 -c, --confg-fle string path to sensu-agent confg fle

 --deregister ephemeral agent

 --deregistration-handler string deregistration handler that should

process the entity deregistration event.

 --disable-api disable the Agent HTTP API

 --disable-sockets disable the Agent TCP and UDP event

sockets

 -h, --help help for start

 --keepalive-interval int number of seconds to send between

keepalive events (default 20)

 --keepalive-timeout uint32 number of seconds until agent is

considered dead by backend (default 120)

 --labels stringToString entity labels map (default [])

 --log-level string logging level [panic, fatal, error,

warn, info, debug] (default "warn")

 --name string agent name (defaults to hostname)

(default "sensu-go-sandbox")

 --namespace string agent namespace (default "default")

 --password string agent password (default "P@ssw0rd!")

 --redact string comma-delimited customized list of felds

to redact

 --socket-host string address to bind the Sensu client socket

to (default "127.0.0.1")

 --socket-port int port the Sensu client socket listens on

(default 3030)

 --statsd-disable disables the statsd listener and metrics

server

 --statsd-event-handlers strings comma-delimited list of event handlers

for statsd metrics

 --statsd-fush-interval int number of seconds between statsd fush

(default 10)

 --statsd-metrics-host string address used for the statsd metrics

server (default "127.0.0.1")

 --statsd-metrics-port int port used for the statsd metrics server

(default 8125)

 --subscriptions string comma-delimited list of agent

subscriptions

 --user string agent user (default "agent")

General confguration fags

Command line examples

sensu-agent start --backend-url ws://0.0.0.0:8081

sensu-agent start --backend-url ws://0.0.0.0:8081 --

backend-url ws://0.0.0.0:8082

/etc/sensu/agent.yml example

backend-url:

 - "ws://0.0.0.0:8081"

 - "ws://0.0.0.0:8082"

backend-url

description ws or wss URL of the Sensu backend server. To specify multiple
backends using sensu-agent start , use this fag multiple times.

type List

default ws://127.0.0.1:8081

example

Command line example

sensu-agent start --cache-dir /cache/sensu-agent

/etc/sensu/agent.yml example

cache-dir: "/cache/sensu-agent"

cache-dir

description Path to store cached data

type String

default Linux: /var/cache/sensu/sensu-agent
Windows: C:\\ProgramData\sensu\cache\sensu-agent

example

Command line example

sensu-agent start --confg-fle /sensu/agent.yml

sensu-agent start -c /sensu/agent.yml

/etc/sensu/agent.yml example

confg-fle: "/sensu/agent.yml"

confg-fle

description Path to Sensu agent confg fle

type String

default Linux: /etc/sensu/agent.yml
FreeBSD: /usr/local/etc/sensu/agent.yml

Windows: C:\\ProgramData\sensu\confg\agent.yml

example

Command line example

sensu-agent start --labels proxy_type=website

/etc/sensu/agent.yml example

labels:

 proxy_type: "website"

labels

description Custom attributes to include with event data, which can be queried like
regular attributes. You can use labels to organize entities into meaningful
collections that can be selected using flters and tokens.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

Command line example

sensu-agent start --name agent-01

/etc/sensu/agent.yml example

name: "agent-01"

name

description Entity name assigned to the agent entity

type String

default Defaults to hostname, for example: sensu-centos

example

Command line example

sensu-agent start --log-level debug

/etc/sensu/agent.yml example

log-level: "debug"

log-level

description Logging level: panic , fatal , error , warn , info , or debug

type String

default warn

example

Command line examples

sensu-agent start --subscriptions disk-checks,process-

checks

sensu-agent start --subscriptions disk-checks --

subscriptions process-checks

/etc/sensu/agent.yml example

subscriptions:

 - disk-checks

 - process-checks

subscriptions

description An array of agent subscriptions which determine which monitoring
checks are executed by the agent. The subscriptions array items must
be strings.

type List

example

API confguration fags

Command line example

sensu-agent start --api-host 0.0.0.0

/etc/sensu/agent.yml example

api-host: "0.0.0.0"

api-host

description Bind address for the Sensu agent HTTP API

type String

default 127.0.0.1

example

Command line example

sensu-agent start --api-port 4041

/etc/sensu/agent.yml example

api-port: 4041

api-port

description Listening port for the Sensu agent HTTP API

type Integer

default 3031

example

disable-api

Command line example

sensu-agent start --disable-api

/etc/sensu/agent.yml example

disable-api: true

description Disable the agent HTTP API

type Boolean

default false

example

Ephemeral agent confguration fags

Command line example

sensu-agent start --deregister

/etc/sensu/agent.yml example

deregister: true

deregister

description Indicates whether a deregistration event should be created upon Sensu
agent process stop

type Boolean

default false

example

deregistration-
handler

Command line example

sensu-agent start --deregistration-handler deregister

/etc/sensu/agent.yml example

deregistration-handler: "deregister"

description The name of a deregistration handler that processes agent
deregistration events. This fag overrides any handlers applied by the
deregistration-handler backend confguration fag.

type String

example

Keepalive confguration fags

Command line example

sensu-agent start --keepalive-interval 30

/etc/sensu/agent.yml example

keepalive-interval: 30

keepalive-
interval

description Number of seconds between keepalive events

type Integer

default 20

example

keepalive-
timeout

description Number of seconds after a missing keepalive event until the agent is

Command line example

sensu-agent start --keepalive-timeout 300

/etc/sensu/agent.yml example

keepalive-timeout: 300

considered unresponsive by the Sensu backend

type Integer

default 120

example

Security confguration fags

Command line example

sensu-agent start --namespace ops

/etc/sensu/agent.yml example

namespace: "ops"

namespace

description Agent namespace NOTE: Agents are represented in the backend
as a class of entity. Entities can only belong to a single
namespace.

type String

default default

example

user

description Sensu RBAC username used by the agent. Agents require get, list, create,

Command line example

sensu-agent start --user agent-01

/etc/sensu/agent.yml example

user: "agent-01"

update, and delete permissions for events across all namespaces.

type String

default agent

example

Command line example

sensu-agent start --password secure-password

/etc/sensu/agent.yml example

password: "secure-password"

password

description Sensu RBAC password used by the agent

type String

default P@ssw0rd!

example

redact

description List of felds to redact when logging and sending keepalives

type List

default By default, Sensu redacts the following felds: password , passwd ,
pass api key api token access key secret key

Command line example

sensu-agent start --redact secret,ec2_access_key

/etc/sensu/agent.yml example

redact:

 - secret

 - ec2_access_key

, , , , ,
private_key , secret

example

Socket confguration fags

Command line example

sensu-agent start --socket-host 0.0.0.0

/etc/sensu/agent.yml example

socket-host: "0.0.0.0"

socket-host

description Address to bind the Sensu agent socket to

type String

default 127.0.0.1

example

socket-port

description Port the Sensu agent socket listens on

type Integer

Command line example

sensu-agent start --socket-port 4030

/etc/sensu/agent.yml example

socket-port: 4030

default 3030

example

Command line example

sensu-agent start --disable-sockets

/etc/sensu/agent.yml example

disable-sockets: true

disable-sockets

description Disable the agent TCP and UDP event sockets

type Boolean

default false

example

StatsD confguration fags

statsd-disable

description Disables the StatsD listener and metrics server

type Boolean

default false

https://github.com/etsy/statsd

Command line example

sensu-agent start --statsd-disable

/etc/sensu/agent.yml example

statsd-disable: true

example

Command line examples

sensu-agent start --statsd-event-handlers

infuxdb,opentsdb

sensu-agent start --statsd-event-handlers infuxdb --

statsd-event-handlers opentsdb

/etc/sensu/agent.yml example

statsd-event-handlers:

 - infuxdb

 - opentsdb

statsd-event-
handlers

description List of event handlers for StatsD metrics

type List

example

statsd-fush-
interval

description Number of seconds between StatsD fush

type Integer

default 10

example

https://github.com/etsy/statsd#key-concepts

Command line example

sensu-agent start --statsd-fush-interval 30

/etc/sensu/agent.yml example

statsd-fush-interval: 30

Command line example

sensu-agent start --statsd-metrics-host 0.0.0.0

/etc/sensu/agent.yml example

statsd-metrics-host: "0.0.0.0"

statsd-metrics-
host

description Address used for the StatsD metrics server

type String

default 127.0.0.1

example

Command line example

sensu-agent start --statsd-metrics-port 6125

/etc/sensu/agent.yml example

statsd-metrics-
port

description Port used for the StatsD metrics server

type Integer

default 8125

example

statsd-metrics-port: 6125

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Assets

What is an asset?

How do assets work?

Asset format specifcation

Asset specifcation

Examples

Sharing an asset on Bonsai

You can discover, download, and share assets using Bonsai, the Sensu asset index.
Read the guide to
using assets to get started.

What is an asset?

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
You can use
assets to provide the plugins, libraries, and runtimes you need to automate your monitoring
workfows.
Sensu supports runtime assets for checks, flters, mutators, and handlers.

How do assets work?

Assets can be executed by the backend (for handler, flter, and mutator assets), or
by the agent (for
check assets). At runtime, the entity sequentially fetches
assets and stores them in its local cache.
Asset dependencies are then
injected into the PATH so they are available when the command is
executed.
Subsequent check, handler, flter, or mutator executions look for the asset in the local
cache
and ensure the contents match the checksum. The backend or agent’s local cache can
be set using
the --cache-dir fag.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://bonsai.sensu.io/
https://docs.sensu.io/sensu-go/5.7/reference/assets/
https://docs.sensu.io/

sensu-example-handler_1.0.0_linux_amd64

├── CHANGELOG.md

├── LICENSE

├── README.md

└── bin

 └── my-check.sh

└── lib

└── include

Asset format specifcation

Sensu expects an asset to be a tar archive (optionally gzipped) containing one or more executables
within a bin folder.
Any scripts or executables should be within a bin/ folder within in the archive.
See
the Sensu Go Plugin template for an example asset and Bonsai confguration.

The following are injected into the execution context:

{PATH_TO_ASSET}/bin is injected into the PATH environment variable.

{PATH_TO_ASSET}/lib is injected into the LD_LIBRARY_PATH environment
variable.

{PATH_TO_ASSET}/include is injected into the CPATH environment variable.

Default cache directory

system sensu-backend sensu-agent

default /var/cache/sensu/sensu-backend /var/cache/sensu/sensu-agent

Windows C:\\ProgramData\sensu\cache\sensu-

backend

C:\\ProgramData\sensu\cache\sensu-

agent

If the requested asset is not in the local cache, it is downloaded from the asset
URL. The Sensu
backend does not currently provide any storage for assets; they
are expected to be retrieved over
HTTP or HTTPS.

Example structure

https://github.com/sensu/sensu-go-plugin

Asset specifcation

Top-level atributes

"type": "Asset"

type

description Top-level attribute specifying the sensuctl create resource type.
Assets should always be of type Asset .

required Required for asset defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For
assets in Sensu backend version 5.3, this attribute should always be
core/v2 .

required Required for asset defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

"metadata": {

 "name": "check_script",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

description Top-level collection of metadata about the asset, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the asset defnition. This

means that in wrapped-json and yaml formats, the metadata

scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for asset defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"spec": {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d1548

 "flters": [

spec

description Top-level map that includes the asset spec attributes.

required Required for asset defnitions in wrapped-json or yaml format for use with sensuct

type Map of key-value pairs

example

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

}

Spec atributes

"url": "http://example.com/asset.tar.gz"

url

description The URL location of the asset.

required true

type String

example

"sha512": "4f926bf4328..."

sha512

description The checksum of the asset.

required true

type String

example

flters

"flters": ["entity.system.os=='linux'",

"entity.system.arch=='amd64'"]

description A set of Sensu query expressions used by the agent to determine if the
asset should be installed. If multiple expressions are included, each
expression must return true in order for the agent to install the asset.

required false

type Array

example

Metadata atributes

"name": "check_script"

name

description The unique name of the asset, validated with Go regex \A[\w\.\-

]+\z .

required true

type String

example

namespace

description The Sensu RBAC namespace that this asset belongs to.

required false

type String

default default

https://regex101.com/r/zo9mQU/2
https://regex101.com/r/zo9mQU/2

"namespace": "production"

example

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

labels

description Custom attributes to include with event data, which can be queried like
regular attributes. You can use labels to organize assets into meaningful
collections that can be selected using flters and tokens.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Arbitrary, non-identifying metadata to include with event data. In
contrast to labels, annotations are not used internally by Sensu and
cannot be used to identify assets. You can use annotations to add data
that helps people or external tools interacting with Sensu.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_script",

 "namespace": "default"

 },

 "spec": {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4

 }

}

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check script",

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

example

Examples

Minimum required asset atributes

Asset defnition

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

 },

 "spec": {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 }

}

Sharing an asset on Bonsai

Share your open-source assets on Bonsai and connect with the Sensu Community.
Bonsai supports
assets hosted on GitHub and released using GitHub releases.
For more information about creating
Sensu Plugins, see the Sensu Plugin specifcation.

Bonsai requires a bonsai.yml confguration fle in the root directory of your repository that includes
the project description, platforms, asset flenames, and SHA-512 checksums.
For a Bonsai-compatible
asset template using Go and GoReleaser, see the Sensu Go plugin skeleton.

To share your asset on Bonsai, log in to Bonsai with your GitHub account and authorize Sensu.
Once
logged in, you can register your asset on Bonsai by adding the GitHub repository, description, and tags.
Make sure to provide a helpful README for your asset with confguration examples.

bonsai.yml example

https://bonsai.sensu.io/
https://github.com/
https://help.github.com/articles/about-releases/
https://docs.sensu.io/plugins/latest/reference/
https://goreleaser.com/
https://github.com/sensu/sensu-go-plugin
https://bonsai.sensu.io/sign-in
https://bonsai.sensu.io/new

description: "#{repo}"

builds:

- platform: "linux"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

- platform: "Windows"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_windows_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'windows'"

 - "entity.system.arch == 'amd64'"

bonsai.yml specifcation

description: "#{repo}"

description

description The project description

required true

type String

example

builds

description An array of asset details per platform

required true

builds:

- platform: "linux"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

type Array

example

Builds specifcation

- platform: "linux"

platform

description The platform supported by the asset

required true

type String

example

arch

description The architecture supported by the asset

required true

type String

 arch: "amd64"

example

asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

asset_flename

description The flename of the archive containing the asset

required true

type String

example

sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

sha_flename

description The SHA-512 checksum for the asset archive

required true

type String

example

flter

description Entity flters specifying the operating system and architecture supported
by the asset

required false

type Array

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

example

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Sensu backend

Installation

Creating event pipelines

Scheduling checks

Service management

Starting and stopping the service

Clustering

Time synchronization

Confguration

General confguration

Agent communication confguration

Security confguration

Dashboard confguration

Datastore and cluster confguration

The Sensu backend is a service that manages check requests and event data.
Every Sensu backend
includes an integrated transport for scheduling checks using subscriptions, an event processing
pipeline that applies flters, mutators, and handlers, an embedded etcd datastore for storing
confguration and state, a Sensu API, Sensu dashboard, and sensu-backend command-line tool.
The
Sensu backend is available for Ubuntu/Debian and RHEL/CentOS distributions of Linux.
See the
installation guide to install the backend.

Event pipeline

The backend processes event data and executes flters, mutators, and handlers.
These pipelines are
powerful tools to automate your monitoring workfows.
To learn more about flters, mutators, and

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://github.com/etcd-io/etcd/blob/master/Documentation/docs.md
https://docs.sensu.io/sensu-go/5.7/reference/backend/
https://docs.sensu.io/

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

handlers, see:

Guide to sending Slack alerts with handlers

Guide to reducing alerting fatigue with flters

Filters reference documentation

Mutators reference documentation

Handlers reference documentation

Check scheduling

The backend is responsible for storing check defnitions and scheduling check requests.
Check
scheduling is subscription-based; the backend sends check requests to subscriptions where they’re
picked up by subscribing agents.

For information about creating and managing checks, see:

Guide to monitoring server resources with checks

Guide to collecting metrics with checks

Checks reference documentation

Operation

NOTE: Commands in this section may require administrative privileges.

Starting the service

Use the sensu-backend tool to start the backend and apply confguration fags.

To start the backend with confguration fags:

To see available confguration fags and defaults:

sensu-backend start --help

service sensu-backend start

service sensu-backend stop

service sensu-backend restart

systemctl enable sensu-backend

If no confguration fags are provided, the backend loads confguration from
/etc/sensu/backend.yml by default.

To start the backend using a service manager:

Stopping the service

To stop the backend service using a service manager:

Restarting the service

You must restart the backend to implement any confguration updates.

To restart the backend using a service manager:

Enabling on boot

To enable the backend to start on system boot:

systemctl disable sensu-backend

service sensu-backend status

sensu-backend version

Show sensu-backend commands

sensu-backend help

Show options for the sensu-backend start subcommand

sensu-backend start --help

To disable the backend from starting on system boot:

NOTE: On older distributions of Linux, use sudo chkconfg sensu-server on to enable the
backend and sudo chkconfg sensu-server off to disable.

Geting service status

To see the status of the backend service using a service manager:

Geting service version

To get the current backend version using the sensu-backend tool:

Geting help

The sensu-backend tool provides general and command-specifc help fags:

$ sensu-backend start --help

start the sensu backend

Usage:

 sensu-backend start [fags]

General Flags:

 --agent-host string agent listener host (default "[::]")

 --agent-port int agent listener port (default 8081)

 --api-listen-address string address to listen on for api traffc

(default "[::]:8080")

Clustering

You can run the backend as a standalone service, but running a cluster of backends makes Sensu
more highly available, reliable, and durable.
Sensu backend clusters build on the clustering system
used by etcd.
Clustering lets you synchronize data between backends and get the benefts of a highly
available confguration.
To confgure a cluster, see:

Datastore confguration fags

Guide to running a Sensu cluster

Time synchronization

System clocks between agents and the backend should be synchronized to a central NTP server.
Out of sync system time may cause issues with keepalive, metric, and check alerts.

Confguration

You can specify the backend confguration using a /etc/sensu/backend.yml fle or using
sensu-backend start confguration fags.
The backend requires that the state-dir fag be set

before starting; all other required fags have default values.
See the example confg fle provided with
Sensu at /usr/share/doc/sensu-go-backend-5.0.0/backend.yml.example .
The backend loads
confguration upon startup, so you must restart the backend for any confguration updates to take
effect.

Confguration summary

https://github.com/etcd-io/etcd/blob/master/Documentation/docs.md

 --api-url string url of the api to connect to (default

"http://localhost:8080")

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-backend")

 --cert-fle string tls certifcate

 -c, --confg-fle string path to sensu-backend confg fle

 --dashboard-host string dashboard listener host (default "[::]")

 --dashboard-port int dashboard listener port (default 3000)

 --debug enable debugging and profling features

 --deregistration-handler string default deregistration handler

 -h, --help help for start

 --insecure-skip-tls-verify skip ssl verifcation

 --key-fle string tls certifcate key

 --log-level string logging level [panic, fatal, error,

warn, info, debug] (default "warn")

 -d, --state-dir string path to sensu state storage (default

"/var/lib/sensu")

 --trusted-ca-fle string tls certifcate authority

Store Flags:

 --etcd-advertise-client-urls strings list of this member's client

URLs to advertise to the rest of the cluster. (default [http://localhost:2379])

 --etcd-cert-fle string path to the client server TLS

cert fle

 --etcd-client-cert-auth enable client cert

authentication

 --etcd-initial-advertise-peer-urls strings list of this member's peer

URLs to advertise to the rest of the cluster (default [http://127.0.0.1:2380])

 --etcd-initial-cluster string initial cluster confguration

for bootstrapping (default "default=http://127.0.0.1:2380")

 --etcd-initial-cluster-state string initial cluster state ("new"

or "existing") (default "new")

 --etcd-initial-cluster-token string initial cluster token for the

etcd cluster during bootstrap

 --etcd-key-fle string path to the client server TLS

key fle

 --etcd-listen-client-urls strings list of URLs to listen on for

client traffc (default [http://127.0.0.1:2379])

 --etcd-listen-peer-urls strings list of URLs to listen on for

peer traffc (default [http://127.0.0.1:2380])

 --etcd-name string human-readable name for this

member (default "default")

 --etcd-peer-cert-fle string path to the peer server TLS

cert fle

 --etcd-peer-client-cert-auth enable peer client cert

authentication

 --etcd-peer-key-fle string path to the peer server TLS

key fle

 --etcd-peer-trusted-ca-fle string path to the peer server TLS

trusted CA fle

 --etcd-trusted-ca-fle string path to the client server TLS

trusted CA cert fle

 --no-embed-etcd don't embed etcd, use

external etcd instead

General confguration fags

Command line example

sensu-backend start --cache-dir /cache/sensu-backend

/etc/sensu/backend.yml example

cache-dir: "/cache/sensu-backend"

cache-dir

description Path to store cached data

type String

default Linux: /var/cache/sensu/sensu-backend
Windows: C:\\ProgramData\sensu\cache\sensu-backend

example

confg-fle

Command line example

sensu-backend start --confg-fle /etc/sensu/backend.yml

sensu-backend start -c /etc/sensu/backend.yml

/etc/sensu/backend.yml example

confg-fle: "/etc/sensu/backend.yml"

description Path to Sensu backend confg fle

type String

default Linux: /etc/sensu/backend.yml
FreeBSD: /usr/local/etc/sensu/backend.yml

Windows: C:\\ProgramData\sensu\confg\backend.yml

example

Command line example

sensu-backend start --debug

/etc/sensu/backend.yml example

debug: true

debug

description Enable debugging and profling features

type Boolean

default false

example

deregistration-
handler

description Default event handler to use when processing agent deregistration

Command line example

sensu-backend start --deregistration-handler

/path/to/handler.sh

/etc/sensu/backend.yml example

deregistration-handler: "/path/to/handler.sh"

events.

type String

default ""

example

Command line example

sensu-backend start --log-level debug

/etc/sensu/backend.yml example

log-level: "debug"

log-level

description Logging level: panic , fatal , error , warn , info , or debug

type String

default warn

example

state-dir

description Path to Sensu state storage: /var/lib/sensu/sensu-backend for
Linux and C:\\ProgramData\sensu\data for Windows.

type String

Command line example

sensu-backend start --state-dir /var/lib/sensu/sensu-

backend

sensu-backend start -d /var/lib/sensu/sensu-backend

/etc/sensu/backend.yml example

state-dir: "/var/lib/sensu/sensu-backend"

required true

example

Command line example

sensu-backend start --api-listen-address [::]:8080

/etc/sensu/backend.yml example

api-listen-address: "[::]:8080"

api-listen-
address

description Address the API daemon will listen for requests on

type String

default [::]:8080

example

api-url

description URL used to connect to the API

type String

default http://localhost:8080

example

Command line example

sensu-backend start --api-url http://localhost:8080

/etc/sensu/backend.yml example

api-url: "http://localhost:8080"

Agent communication confguration fags

Command line example

sensu-backend start --agent-host 127.0.0.1

/etc/sensu/backend.yml example

agent-host: "127.0.0.1"

agent-host

description agent listener host, listens on all IPv4 and IPv6 addresses by default

type String

default [::]

example

Command line example

sensu-backend start --agent-port 8081

agent-port

description agent listener port

type Integer

default 8081

example

/etc/sensu/backend.yml example

agent-port: 8081

Security confguration fags

Command line example

sensu-backend start --cert-fle /path/to/ssl/cert.pem

/etc/sensu/backend.yml example

cert-fle: "/path/to/ssl/cert.pem"

cert-fle

description Path to the primary backend certifcate fle. This certifcate secures
communications between Sensu Dashboard and end user web
browsers, as well as communication between sensuctl and the Sensu
API.

type String

default ""

example

Command line example

key-fle

description SSL/TLS certifcate key. This key secures communication with the
Sensu Dashboard and API.

type String

default ""

example

sensu-backend start --key-fle /path/to/ssl/key.pem

/etc/sensu/backend.yml example

key-fle: "/path/to/ssl/key.pem"

Command line example

sensu-backend start --trusted-ca-fle /path/to/trusted-

certifcate-authorities.pem

/etc/sensu/backend.yml example

trusted-ca-fle: "/path/to/trusted-certifcate-

authorities.pem"

trusted-ca-fle

description Specifes a fallback SSL/TLS certifcate authority in PEM format used for
etcd client (mutual TLS) communication if the etcd-trusted-ca-fle

is not used.

type String

default ""

example

insecure-skip-
tls-verify

description Skip SSL verifcation. WARNING: This confguration fag is intended
for use in development systems only. Do not use this fag in
production.

type Boolean

default false

example

Command line example

sensu-backend start --insecure-skip-tls-verify

/etc/sensu/backend.yml example

insecure-skip-tls-verify: true

Dashboard confguration fags

Command line example

sensu-backend start --dashboard-host 127.0.0.1

/etc/sensu/backend.yml example

dashboard-host: "127.0.0.1"

dashboard-host

description Dashboard listener host

type String

default [::]

example

Command line example

sensu-backend start --dashboard-port 4000

dashboard-port

description Dashboard listener port

type Integer

default 3000

example

/etc/sensu/backend.yml example

dashboard-port: 4000

Datastore and cluster confguration fags

Command line examples

sensu-backend start --etcd-advertise-client-urls

http://localhost:2378,http://localhost:2379

sensu-backend start --etcd-advertise-client-urls

http://localhost:2378 --etcd-advertise-client-urls

http://localhost:2379

/etc/sensu/backend.yml example

etcd-advertise-client-urls:

 - http://localhost:2378

 - http://localhost:2379

etcd-advertise-
client-urls

description List of this member’s client URLs to advertise to the rest of the cluster.

type List

default http://localhost:2379

example

etcd-cert-fle

description Path to the etcd client API TLS cert fle. Secures communication
between the embedded etcd client API and any etcd clients.

type String

Command line example

sensu-backend start --etcd-cert-fle ./client.pem

/etc/sensu/backend.yml example

etcd-cert-fle: "./client.pem"

default ""

example

Command line example

sensu-backend start --etcd-client-cert-auth

/etc/sensu/backend.yml example

etcd-client-cert-auth: true

etcd-client-
cert-auth

description Enable client cert authentication

type Boolean

default false

example

etcd-initial-
advertise-peer-
urls

description List of this member’s peer URLs to advertise to the rest of the cluster

type List

default http://127.0.0.1:2380

example

Command line examples

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380 --etcd-listen-peer-urls

https://10.1.0.1:2380

/etc/sensu/backend.yml example

etcd-listen-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

Command line example

sensu-backend start --etcd-initial-cluster backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380

/etc/sensu/backend.yml example

etcd-initial-cluster: "backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380"

etcd-initial-
cluster

description Initial cluster confguration for bootstrapping

type String

default http://127.0.0.1:2380

example

etcd-initial-
cluster-state

description Initial cluster state (new or existing)

Command line example

sensu-backend start --etcd-initial-cluster-state

existing

/etc/sensu/backend.yml example

etcd-initial-cluster-state: "existing"

type String

default new

example

Command line example

sensu-backend start --etcd-initial-cluster-token sensu

/etc/sensu/backend.yml example

etcd-initial-cluster-token: "sensu"

etcd-initial-
cluster-token

description Initial cluster token for the etcd cluster during bootstrap

type String

default ""

example

etcd-key-fle

description Path to the etcd client API TLS key fle. Secures communication
between the embedded etcd client API and any etcd clients.

type String

Command line example

sensu-backend start --etcd-key-fle ./client-key.pem

/etc/sensu/backend.yml example

etcd-key-fle: "./client-key.pem"

example

Command line examples

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379,https://10.1.0.1:2379

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379 --etcd-listen-client-urls

https://10.1.0.1:2379

/etc/sensu/backend.yml example

etcd-listen-client-urls:

 - https://10.0.0.1:2379

 - https://10.1.0.1:2379

etcd-listen-
client-urls

description List of URLs to listen on for client traffc

type List

default http://127.0.0.1:2379

example

etcd-listen-
peer-urls

description List of URLs to listen on for peer traffc

type List

Command line examples

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380 --etcd-listen-peer-urls

https://10.1.0.1:2380

/etc/sensu/backend.yml example

etcd-listen-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

default http://127.0.0.1:2380

example

Command line example

sensu-backend start --etcd-name backend-0

/etc/sensu/backend.yml example

etcd-name: "backend-0"

etcd-name

description Human-readable name for this member

type String

default default

example

etcd-peer-cert-
fle

description Path to the peer server TLS certifcate fle. This certifcate secures
communication between etcd cluster members.

Command line example

sensu-backend start --etcd-peer-cert-fle ./backend-0.pem

/etc/sensu/backend.yml example

etcd-peer-cert-fle: "./backend-0.pem"

type String

example

Command line example

sensu-backend start --etcd-peer-client-cert-auth

/etc/sensu/backend.yml example

etcd-peer-client-cert-auth: true

etcd-peer-
client-cert-auth

description Enable peer client cert authentication

type Boolean

default false

example

Command line example

sensu-backend start --etcd-peer-key-fle ./backend-0-

etcd-peer-key-
fle

description Path to the etcd peer API TLS key fle. Secures communication between
etcd cluster members.

type String

example

key.pem

/etc/sensu/backend.yml example

etcd-peer-key-fle: "./backend-0-key.pem"

Command line example

sensu-backend start --etcd-peer-trusted-ca-fle ./ca.pem

/etc/sensu/backend.yml example

etcd-peer-trusted-ca-fle: "./ca.pem"

etcd-peer-
trusted-ca-fle

description Path to the etcd peer API server TLS trusted CA fle. This certifcate
secures communication between etcd cluster members.

type String

example

Command line example

sensu-backend start --etcd-trusted-ca-fle ./ca.pem

/etc/sensu/backend.yml example

etcd-trusted-ca-fle: "./ca.pem"

etcd-trusted-
ca-fle

description Path to the client server TLS trusted CA cert fle. Secures
communication with the etcd client server.

type String

default ""

example

Command line example

sensu-backend start --no-embed-etcd

/etc/sensu/backend.yml example

no-embed-etcd: true

no-embed-etcd

description Don’t embed etcd, use external etcd instead

type Boolean

default false

example

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

https://sensu.io/products

Made with #monitoringlove by Sensu, Inc. © 2013-2019

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Checks

Check commands

Check scheduling

Check result specifcation

Token substitution

Hooks

Proxy requests

Specifcation

Examples

How do checks work?

Check commands

Each Sensu check defnition defnes a command and the interval at which
it should be executed.
Check commands are executable commands which
will be executed by the Sensu agent.

A command may include command line arguments for controlling the behavior of the
command
executable. Most Sensu check plugins provide support for command line
arguments for reusability.

Sensu advises against requiring root privileges to execute check
commands or scripts. The Sensu user
is not permitted to kill timed out processes
invoked by the root user, which could result in zombie
processes.

How and where are check commands executed?

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/checks/
https://docs.sensu.io/

All check commands are executed by Sensu agents as the sensu user. Commands
must be
executable fles that are discoverable on the Sensu agent system (ex:
installed in a system $PATH

directory).

Check scheduling

Checks are exclusively scheduled by the Sensu backend, which schedules and
publishes check
execution requests to entities via a Publish/Subscribe
model .

Checks have a defned set of subscribers, a list of transport
topics that check requests will be
published to. Sensu entities become
subscribers to these topics (called subscriptions) via their
individual
subscriptions attribute. In practice, subscriptions will typically correspond to
a specifc role
and/or responsibility (ex: a webserver or database).

Subscriptions are a powerful primitives in the monitoring context because they
allow you to effectively
monitor for specifc behaviors or characteristics
corresponding to the function being provided by a
particular system. For
example, disk capacity thresholds might be more important (or at least
different)
on a database server as opposed to a webserver; conversely, CPU
and/or memory usage thresholds
might be more important on a caching system than
on a fle server. Subscriptions also allow you to
confgure check requests for
an entire group or subgroup of systems rather than require a traditional 1:1
mapping.

Checks can be scheduled in an interval or cron fashion. It’s important to note
that for interval checks,
an initial offset is calculated to splay the check’s
frst scheduled request. This helps to balance the
load of both the backend
and the agent, and may result in a delay before initial check execution.

Check result specifcation

Although the Sensu agent will attempt to execute any
command defned for a check, successful
processing of check results requires
adherence to a simple specifcation.

Result data is output to STDOUT or STDERR

For standard checks this output is typically a human-readable message

For metrics checks this output contains the measurements gathered by the
check

Exit status code indicates state

0 indicates “OK”

1 indicates “WARNING”

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Standard_streams

2 indicates “CRITICAL”

exit status codes other than 0 , 1 , or 2 indicate an “UNKNOWN” or
custom status

PRO TIP: Those familiar with the Nagios monitoring
system may recognize this
specifcation, as it is the same one used by Nagios
plugins. As a result, Nagios plugins can
be used with Sensu without any
modifcation.

At every execution of a check command – regardless of success or failure – the
Sensu agent
publishes the check’s result for eventual handling by the event
processor (the Sensu backend).

Check token substitution

Sensu check defnitions may include attributes that you may wish to override on
an entity-by-entity
basis. For example, check commands – which may include
command line arguments for controlling
the behavior of the check command – may
beneft from entity-specifc thresholds, etc. Sensu check
tokens are check
defnition placeholders that will be replaced by the Sensu agent with the
corresponding entity defnition attributes values (including custom attributes).

Learn how to use check tokens with the Sensu tokens reference
documentation .

NOTE: Check tokens are processed before check execution, therefore token substitutions
will not apply to check data delivered via the local agent socket input.

Check hooks

Check hooks are commands run by the Sensu agent in response to the result of
check command
execution. The Sensu agent will execute the appropriate confgured
hook command, depending on
the check execution status (ex: 0, 1, 2).

Learn how to use check hooks with the Sensu hooks reference
documentation .

Proxy requests

Sensu supports running checks where the results are considered to be for an
entity that isn’t actually
the one executing the check, regardless of whether
that entity is a Sensu agent entity or a proxy
entity.
Proxy entities allow Sensu to monitor external resources
on systems or devices where a Sensu
agent cannot be installed, like a
network switch or a website.

By specifying the proxy_requests attributes in a check, Sensu runs the check
for each entity that
matches certain defnitions specifed in the entity_attributes .
The attributes supplied must match
exactly as stated; no variables or directives have
any special meaning, but you can still use Sensu
query expressions to
perform more complicated fltering on the available value, such as fnding
entities
with particular subscriptions.

Check specifcation

Top-level atributes

"type": "CheckConfg"

type

description Top-level attribute specifying the sensuctl create resource type.
Checks should always be of type CheckConfg .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For
checks in Sensu backend version 5.0, this attribute should always be
core/v2 .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

metadata

description Top-level collection of metadata about the check, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the check defnition. This

means that in wrapped-json and yaml formats, the metadata

scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the check spec attributes.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

"spec": {

 "command": "/etc/sensu/plugins/check-chef-client.go",

 "interval": 10,

 "publish": true,

 "subscriptions": [

 "production"

]

}

example

Spec atributes

"command": "/etc/sensu/plugins/check-chef-client.go"

command

description The check command to be executed.

required true

type String

example

"subscriptions": ["production"]

subscriptions

description An array of Sensu entity subscriptions that check requests will be sent
to. The array cannot be empty and its items must each be a string.

required true

type Array

example

"handlers": ["pagerduty", "email"]

handlers

description An array of Sensu event handlers (names) to use for events created by
the check. Each array item must be a string.

required false

type Array

example

"interval": 60

interval

description How often the check is executed, in seconds

required true (unless publish is false or cron is confgured)

type Integer

example

cron

description When the check should be executed, using cron syntax or these
predefned schedules.

required true (unless publish is false or interval is confgured)

type String

example

https://en.wikipedia.org/wiki/Cron#CRON_expression
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules

"cron": "0 0 * * *"

"publish": false

publish

description If check requests are published for the check.

required false

type Boolean

example

"timeout": 30

timeout

description The check execution duration timeout in seconds (hard stop).

required false

type Integer

example

tl

description The time to live (TTL) in seconds until check results are considered
stale. If an agent stops publishing results for the check, and the TTL
expires, an event will be created for the agent’s entity. The check ttl

must be greater than the check interval , and should accommodate
time for the check execution and result processing to complete. For
example, if a check has an interval of 60 (seconds) and a
timeout of 30 (seconds), an appropriate ttl would be a minimum

"ttl": 100

of 90 (seconds).

required false

type Integer

example

"stdin": true

stdin

description If the Sensu agent writes JSON serialized Sensu entity and check data
to the command process’ STDIN. The command must expect the JSON
data via STDIN, read it, and close STDIN. This attribute cannot be used
with existing Sensu check plugins, nor Nagios plugins etc, as Sensu
agent will wait indefnitely for the check process to read and close
STDIN.

required false

type Boolean

default false

example

low_fap_threshold

description The fap detection low threshold (% state change) for the check.
Sensu uses the same fap detection algorithm as Nagios.

required false

type Integer

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

"low_fap_threshold": 20

example

"high_fap_threshold": 60

high_fap_threshold

description The fap detection high threshold (% state change) for the check.
Sensu uses the same fap detection algorithm as Nagios.

required true (if low_fap_threshold is confgured)

type Integer

example

"runtime_assets": ["ruby-2.5.0"]

runtime_assets

description An array of Sensu assets (names), required at runtime for the execution
of the command

required false

type Array

example

check_hooks

description An array of check response types with respective arrays of Sensu hook
names. Sensu hooks are commands run by the Sensu agent in
response to the result of the check command execution. Hooks are
executed, in order of precedence, based on their severity type: 1 to

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

"check_hooks": [

 {

 "0": [

 "passing-hook","always-run-this-hook"

]

 },

 {

 "critical": [

 "failing-hook","collect-diagnostics","always-run-

this-hook"

]

 }

]

255 , ok , warning , critical , unknown , and fnally non-zero .

required false

type Array

example

"proxy_entity_name": "switch-dc-01"

proxy_entity_name

description The entity name, used to create a proxy entity for an external
resource (i.e., a network switch).

required false

type String

validated \A[\w\.\-]+\z

example

https://regex101.com/r/zo9mQU/2

"proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

],

 "splay": true,

 "splay_coverage": 90

}

proxy_requests

description Sensu proxy request attributes allow you to assign the check to run for
multiple entities according to their entity_attributes . In the
example below, the check executes for all entities with entity class
proxy and the custom proxy type label website . Proxy requests are

a great way to reuse check defnitions for a group of entities. For more
information, see the proxy requests specifcation and the guide to
monitoring external resources .

required false

type Hash

example

"silenced": false

silenced

description If the event is to be silenced.

type boolean

example

env_vars

description An array of environment variables to use with command execution.

"env_vars": ["RUBY_VERSION=2.5.0",

"CHECK_HOST=my.host.internal"]

NOTE: To add env_vars to a check, use sensuctl create .

required false

type Array

example

"output_metric_format": "graphite_plaintext"

output_metric_format

description The metric format generated by the check command. Sensu
supports the following metric formats:
nagios_perfdata (Nagios Performance Data)
graphite_plaintext (Graphite Plaintext Protocol)
infuxdb_line (InfuxDB Line Protocol)
opentsdb_line (OpenTSDB Data Specifcation)

When a check includes an output_metric_format , Sensu will
extract the metrics from the check output and add them to the
event data in Sensu metric format. For more information about
extracting metrics using Sensu, see the guide.

required false

type String

example

output_metric_handlers

description An array of Sensu handlers to use for events created by the
check. Each array item must be a string.
output_metric_handlers should be used in place of the
handlers attribute if output_metric_format is confgured.

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/influxdb/v1.4/write_protocols/line_protocol_tutorial/#measurement
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification

"output_metric_handlers": ["infux-db"]

Metric handlers must be able to process Sensu metric format.
For an example, see the Sensu InfuxDB handler.

required false

type Array

example

"round_robin": false

round_robin

description Round-robin check subscriptions are not yet implemented in Sensu Go.
Although the round_robin attribute appears in check defnitions by
default, it is a placeholder and should not be modifed.

example

"subdue": null

subdue

description Check subdues are not yet implemented in Sensu Go. Although the
subdue attribute appears in check defnitions by default, it is a

placeholder and should not be modifed.

example

Metadata atributes

name

https://github.com/sensu/sensu-influxdb-handler

"name": "check-cpu"

description A unique string used to identify the check. Check names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each check must have a unique name within its namespace.

required true

type String

example

"namespace": "production"

namespace

description The Sensu RBAC namespace that this check belongs to.

required false

type String

default default

example

labels

description Custom attributes to include with event data, which can be queried like
regular attributes. You can use labels to organize checks into meaningful
collections that can be selected using flters and tokens.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

https://regex101.com/r/zo9mQU/2

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

default null

example

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

annotations

description Arbitrary, non-identifying metadata to include with event data. In
contrast to labels, annotations are not used internally by Sensu and
cannot be used to identify checks. You can use annotations to add data
that helps people or external tools interacting with Sensu.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Proxy requests atributes

entity_atributes

description Sensu entity attributes to match entities in the registry, using Sensu
query expressions

"entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

]

required false

type Array

example

"splay": true

splay

description If proxy check requests should be splayed, published evenly over a
window of time, determined by the check interval and a confgurable
splay coverage percentage. For example, if a check has an interval of
60 seconds and a confgured splay coverage of 90 %, its proxy check

requests would be splayed evenly over a time window of 60 seconds
* 90 %, 54 seconds, leaving 6 s for the last proxy check execution
before the the next round of proxy check requests for the same check.

required false

type Boolean

default false

example

splay_coverage

description The percentage of the check interval over which Sensu can execute
the check for all applicable entities, as defned in the entity attributes.
Sensu uses the splay coverage attribute to determine the amount of
time check requests can be published over (before the next check
interval).

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default",

 "name": "check_minimum"

 },

 "spec": {

 "command": "collect.sh",

 "subscriptions": [

 "system"

],

 "handlers": [

 "slack"

],

 "interval": 10,

 "publish": true

 }

}

"splay_coverage": 90

required required if splay attribute is set to true

type Integer

example

Examples

Minimum recommended check atributes

NOTE: The attribute interval is not required if a valid cron schedule is defned.

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

 },

 "spec": {

 "command": "collect.sh",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "env_vars": null

 }

}

Metric check

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Entities

How do entities work?

Proxy entities

Managing entity labels

Proxy entities

Agent entities

Entities specifcation

Top-level attributes

Spec attributes

Metadata attributes

System attributes

Network attributes

NetworkInterface attributes

Deregistration attributes

Examples

How do entities work?

Agent entities are monitoring agents, which are installed and run on every system that needs to be
monitored. The entity is responsible for registering the system with the Sensu backend service,
sending keepalive messages (the Sensu heartbeat mechanism), and executing monitoring checks.
Each entity is a member of one or more subscriptions – a list of roles and/or responsibilities
assigned to the agent entity (ex: a webserver or a database). Sensu entities will “subscribe” to (or
watch for) check requests published by the Sensu server (via the Sensu Transport), execute the
corresponding requests locally, and publish the results of the check back to the transport (to be

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/entities/
https://docs.sensu.io/

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

processed by a Sensu server).

An entity represents anything (ex: server, container, network switch) that needs to be monitored,
including the full range of infrastructure, runtime and application types that compose a complete
monitoring environment (from server hardware to serverless functions).
We call these monitored
parts of an infrastructure “entities”.
An entity not only provides context to event data (what/where the
event is from) but an event’s uniqueness is determined by the check name and the name of the
entity upon which the check ran.
In addition, an entity can contain system information such as the
hostname, OS, platform, and version.

Proxy entities

Proxy entities (formerly known as proxy clients, “Just-in-time” or “JIT” clients) are dynamically created
entities, added to the entity store if an entity does not already exist for a check result. Proxy entity
registration differs from keepalive-based registration because the registration event happens while
processing a check result (not a keepalive message). Sensu proxy entities allow Sensu to monitor
external resources on systems and/or devices where a sensu-agent cannot be installed (such a
network switch) using the defned check ProxyEntityName to create a proxy entity for the external
resource.

Managing entity labels

Custom labels let you organize entities into meaningful collections that can be selected using flters
and tokens.

Proxy entities

For entities with class proxy , you can create and manage labels using sensuctl.
For example, to
create a proxy entity with a url label using sensuctl create , create a fle called example.json
with an entity defnition that includes labels .

 "namespace": "default",

 "labels": {

 "url": "docs.sensu.io"

 }

 },

 "spec": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "proxy",

 "last_seen": 0,

 "subscriptions": [],

 "system": {

 "network": {

 "interfaces": null

 }

 }

 }

}

sensuctl create --fle entity.json

sensuctl edit entity sensu-docs

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "namespace": "default",

Then run sensuctl create to create the entity based on the defnition.

To add a label to an existing entity, you can use sensuctl edit .
For example, run sensuctl edit to
add a url label to a sensu-docs entity.

And update the metadata scope to include labels .

 "labels": {

 "url": "docs.sensu.io"

 }

 },

 "spec": {

 "...": "..."

 }

}

labels:

 url: sensu.docs.io

sensu-agent start --labels url=sensu.docs.io

Agent entities

For entities with class agent , you can defne entity attributes in the /etc/sensu/agent.yml
confguration fle.
For example, to add a url label, open /etc/sensu/agent.yml and add
confguration for labels .

Or using sensu-agent start confguration fags.

Entities specifcation

Top-level atributes

type

description Top-level attribute specifying the sensuctl create resource type.
Entities should always be of type Entity .

required Required for entity defnitions in wrapped-json or yaml format for

"type": "Entity"

use with sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For
entities in Sensu backend version 5.0, this attribute should always be
core/v2 .

required Required for entity defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the entity, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the entity defnition. This

means that in wrapped-json and yaml formats, the metadata

scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for entity defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"metadata": {

 "name": "webserver01",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

spec

description Top-level map that includes the entity spec attributes.

required Required for entity defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

Spec atributes

"entity_class": "agent"

entity_class

description The entity type, validated with go regex \A[\w\.\-]+\z . Class names
have special meaning. An entity that runs an agent is of class agent

and is reserved. Setting the value of entity_class to proxy creates
a proxy entity. For other types of entities, the entity_class attribute
isn’t required, and you can use it to indicate an arbitrary type of entity
(like lambda or switch).

required true

type string

example

"subscriptions": ["web", "prod", "entity:example-

entity"]

subscriptions

description A list of subscription names for the entity. The entity by default has an
entity-specifc subscription, in the format of entity:{name} where
name is the entity’s hostname.

required false

type array

default The entity-specifc subscription.

example

https://regex101.com/r/zo9mQU/2

{

 "system": {

 "hostname": "example-hostname",

 "os": "linux",

 "platform": "ubuntu",

 "platform_family": "debian",

 "platform_version": "16.04",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 },

 "arch": "amd64"

 }

}

system

description System information about the entity, such as operating system and
platform. See the system attributes for more information.

required false

type map

example

"last_seen": 1522798317

last_seen

description Timestamp the entity was last seen, in seconds since the Unix epoch.

required false

type integer

example

"deregister": false

deregister

description If the entity should be removed when it stops sending keepalive
messages.

required false

type boolean

default false

example

deregistration

description A map containing a handler name, for use when an entity is
deregistered. See the deregistration attributes for more information.

required false

type map

{

 "deregistration": {

 "handler": "email-handler"

 }

}

example

{

 "redact": [

 "extra_secret_tokens"

]

}

redact

description List of items to redact from log messages. If a value is provided, it
overwrites the default list of items to be redacted.

required false

type array

default [“password”, “passwd”, “pass”, “api_key”, “api_token”, “access_key”,
“secret_key”, “private_key”, “secret”]

example

user

description Sensu RBAC username used by the entity. Agent entities require get, list,
create, update, and delete permissions for events across all
namespaces.

type String

default agent

"user": "agent"

example

Metadata atributes

"name": "example-hostname"

name

description The unique name of the entity, validated with Go regex \A[\w\.\-

]+\z .

required true

type String

example

"namespace": "production"

namespace

description The Sensu RBAC namespace that this entity belongs to.

required false

type String

default default

example

labels

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

description Custom attributes to include with event data, which can be queried like
regular attributes. You can use labels to organize entities into meaningful
collections that can be selected using flters and tokens.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

annotations

description Arbitrary, non-identifying metadata to include with event data. In
contrast to labels, annotations are not used internally by Sensu and
cannot be used to identify entities. You can use annotations to add data
that helps people or external tools interacting with Sensu.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

System atributes

"hostname": "example-hostname"

hostname

description The hostname of the entity.

required false

type string

example

"os": "linux"

os

description The entity’s operating system.

required false

type string

example

platform

description The entity’s operating system distribution.

required false

type string

example

"platform": "ubuntu"

"platform_family": "debian"

platform_family

description The entity’s operating system family.

required false

type string

example

"platform_version": "16.04"

platform_version

description The entity’s operating system version.

required false

type string

example

network

description The entity’s network interface list. See the network attributes for more
information.

required false

type map

{

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 }

}

example

"arch": "amd64"

arch

description The entity’s system architecture. This value is determined by the Go
binary architecture, as a function of runtime.GOARCH. An amd system
running a 386 binary will report the arch as 386 .

required false

type string

example

Network atributes

{

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

}

network_interface

description The list of network interfaces available on the entity, with their
associated MAC and IP addresses.

required false

type array NetworkInterface

example

NetworkInterface atributes

name

"name": "eth0"

description The network interface name.

required false

type string

example

"mac": "52:54:00:20:1b:3c"

mac

description The network interface’s MAC address.

required false

type string

example

 "addresses": ["93.184.216.34/24",

"2606:2800:220:1:248:1893:25c8:1946/10"]

addresses

description The list of IP addresses for the interface.

required false

type array

example

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "webserver01",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

Deregistration atributes

"handler": "email-handler"

handler

description The name of the handler to be called when an entity is deregistered.

required false

type string

example

Examples

Entity defnition

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Made with #monitoringlove by Sensu, Inc. © 2013-2019

https://twitter.com/hashtag/monitoringlove

Events

How do events work?

Creating events using the Sensu agent

Creating events using the events API

Managing events

Deleting events

Resolving events

Event format

Using event data

Events specifcation

Top-level attributes

Spec attributes

Check attributes

Metric attributes

Examples

How do events work?

An event is a generic container used by Sensu to provide context to checks
and/or metrics. The
context, called “event data,” contains information about the
originating entity and the corresponding
check/metric result. An event must
contain a check or metrics, and in certain cases, an event can
contain both.
These generic containers allow Sensu to handle different types of events in the
pipeline.
Since events are polymorphic in nature, it is important to never
assume their contents, or lack-thereof.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/events/
https://docs.sensu.io/

Check-only events

A Sensu event is created every time a check result is processed by the Sensu
server, regardless of the
status indicated by the check result. An event is
created by the agent on receipt of the check
execution result. The agent will
execute any confgured hooks the check might have. From there, it is
forwarded to the Sensu backend for processing. Potentially noteworthy events may
be processed by
one or more event handlers to do things such as send an email or
invoke an automated action.

Metric-only events

Sensu events can also be created when the agent receives metrics through the
Statsd listener. The
agent will translate the statsd metrics to Sensu
Metric Format, and place them inside an event. These
events, since they do not
contain checks, bypass the store, and are sent off to the event pipeline and
corresponding event handlers.

Check and metric events

Events that contain both a check and metrics, most likely originated from
check output metric
extraction. If a check is confgured for metric
extraction, the agent will parse the check output and
transform it to Sensu
Metric Format. Both the check results, and resulting (extracted) metrics are
stored inside the event. Event handlers from event.Check.Handlers and
event.Metrics.Handlers will be invoked.

Creating events using the Sensu agent

The Sensu agent is a powerful event producer and monitoring automation tool.
You can use Sensu
agents to produce events automatically using service checks and metric checks.
Sensu agents can
also act as a collector for metrics throughout your infrastructure.

Creating events using service checks

Creating events using metric checks

Creating events using the agent API

Creating events using the agent TCP and UDP sockets

Creating events using the StatsD listener

sensuctl event list

sensuctl event info entity-name check-name

sensuctl event info entity-name check-name --format yaml

Creating events using the events API

You can send events directly to the Sensu pipeline using the events API.
To create an event, send a
JSON event defnition to the events API PUT endpoint .

Managing events

You can manage event using the Sensu dashboard, events API, and the sensuctl command line tool.

Viewing events

To list all events:

To show event details in the default output format:

With both the list and info commands, you can specify an output format using the --format
fag:

yaml or wrapped-json formats for use with sensuctl create

json format for use with the events API

Deleting events

To delete an event:

sensuctl event delete entity-name check-name

sensuctl event delete entity-name check-name --skip-confrm

Deleted

sensuctl event resolve entity-name check-name

Resolved

You can use the --skip-confrm fag to skip the confrmation step.

You should see a confrmation message on success.

Resolving events

You can use sensuctl to change the status of an event to 0 (OK).
Events resolved by sensuctl include
the output message: “Resolved manually by sensuctl”.

You should see a confrmation message on success.

Event format

Sensu events contain:

entity scope (required)

Information about the source of the event, including any attributes defned in the
entity specifcation

check scope (optional if the metrics scope is present)

Information about how the event was created, including any attributes defned in the
check specifcation

Information about the event and its history, including any check attributes defned in
the event specifcation on this page

metrics scope (optional if the check scope is present)

Metric points in Sensu metric format

timestamp

Time that the event occurred in seconds since the Unix epoch

Using event data

Event data is powerful tool for automating monitoring workfows.
For example, see the guide to
reducing alert fatigue by fltering events based on the event occurrences attribute.

Events specifcation

Top-level atributes

"type": "Event"

type

description Top-level attribute specifying the sensuctl create resource type.
Events should always be of type Event .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For
events in Sensu backend version 5.0, this attribute should always be
core/v2 .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String

example

"metadata": {

 "namespace": "default"

}

metadata

description Top-level scope containing the event namespace . The metadata map
is always at the top level of the check defnition. This means that in
wrapped-json and yaml formats, the metadata scope occurs

outside the spec scope. See the metadata attributes reference for
details.

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the event spec attributes.

"spec": {

 "check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-

ruby/embedded/bin/metrics-curl.rb -u

\"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "sensu-go-sandbox.curl_timings.time_total

0.005 1552506033\nsensu-go-

sandbox.curl_timings.time_namelookup 0.004",

 "output_metric_format": "graphite_plaintext",

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-

sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033

}

Metadata atributes

"namespace": "production"

namespace

description The Sensu RBAC namespace that this event belongs to.

required false

type String

default default

example

Spec atributes

timestamp

"timestamp": 1522099512

description Time that the event occurred in seconds since the Unix epoch

required false

type Integer

default 0

example

"entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

entity

description The entity attributes from the originating entity (agent or proxy).

type Map

required true

example

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

}

check

description The check defnition used to create the event and information about the

"check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-

ruby/embedded/bin/metrics-curl.rb -u

\"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "sensu-go-sandbox.curl_timings.time_total

0.005",

 "output_metric_format": "graphite_plaintext",

status and history of the event. The check scope includes attributes
described in the event specifcation and the check specifcation.

type Map

required true

example

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

}

"metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-

sandbox.curl_timings.time_total",

 "tags": [],

metrics

description The metrics collected by the entity in Sensu metric format. See the
metrics attributes.

type Map

required false

example

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

}

Check atributes

Sensu events include a check scope containing information about how the event was created,
including any attributes defned in the check specifcation, and information about the event and its
history, including the attributes defned below.

"duration": 1.903135228

duration

description Command execution time in seconds

required false

type Float

example

executed

description Time that the check request was executed

"executed": 1522100915

required false

type Integer

example

"history": [

 {

 "executed": 1552505983,

 "status": 0

 },

 {

 "executed": 1552505993,

 "status": 0

 }

]

history

description Check status history for the last 21 check executions. See the history
attributes.

required false

type Array

example

issued

description Time that the check request was issued in seconds since the Unix
epoch

required false

type Integer

"issued": 1552506033

example

"last_ok": 1552506033

last_ok

description The last time that the check returned an OK status (0) in seconds
since the Unix epoch

required false

type Integer

example

"occurrences": 1

occurrences

description The number of times an event with the same status has occurred for
the given entity and check

required false

type Integer

example

occurrences_watermark

description The highest number of occurrences for the given entity and
check at the current status

"occurrences_watermark": 1

required false

type Integer

example

"output": "sensu-go-sandbox.curl_timings.time_total

0.005"

output

description The output from the execution of the check command

required false

type String

example

"state": "passing"

state

description The state of the check: passing (status 0), failing (status other
than 0), or fapping . You can use the low_fap_threshold and
high_fap_threshold check attributes to confgure fapping state

detection.

required false

type String

example

"status": 0

status

description Exit status code produced by the check
0 indicates “OK”
1 indicates “WARNING”
2 indicates “CRITICAL”

exit status codes other than 0 , 1 , or 2 indicate an
“UNKNOWN” or custom status

required false

type Integer

example

"total_state_change": 0

total_state_change

description The total state change percentage for the check’s history

required false

type Integer

example

History atributes

executed

description Time that the check request was executed in seconds since the Unix
epoch

"executed": 1522100915

required false

type Integer

example

"status": 0

status

description Exit status code produced by the check
0 indicates “OK”
1 indicates “WARNING”
2 indicates “CRITICAL”

exit status codes other than 0 , 1 , or 2 indicate an
“UNKNOWN” or custom status

required false

type Integer

example

Metric atributes

handlers

description An array of Sensu handlers to use for events created by the check. Each
array item must be a string.

required false

type Array

"handlers": [

 "infux-db"

]

example

"points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

points

description Metric data points including a name, timestamp, value, and tags. See the
points attributes.

required false

type Array

example

Points atributes

name

"name": "sensu-go-sandbox.curl_timings.time_total"

description The metric name in the format $entity.$check.$metric where
$entity is the entity name, $check is the check name, and
$metric is the metric name.

required false

type String

example

"tags": []

tags

description Optional tags to include with the metric

required false

type Array

example

"timestamp": 1552506033

timestamp

description Time that the metric was collected in seconds since the Unix epoch

required false

type Integer

example

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "check-cpu.sh -w 75 -c 90",

 "duration": 1.07055808,

 "env_vars": null,

 "executed": 1552594757,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552594757,

 "status": 0

 }

"value": 0.005

value

description The metric value

required false

type Float

example

Examples

Example check-only event data

],

 "interval": 60,

 "issued": 1552594757,

 "last_ok": 1552594758,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "CPU OK - Usage:3.96\n",

 "output_metric_format": "",

 "output_metric_handlers": [],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "linux"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552594641,

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "linux",

 "entity:sensu-centos"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-centos",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::9688:67ca:3d78:ced9/64"

],

 "mac": "08:00:27:11:ad:d2",

 "name": "enp0s3"

 },

 {

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe6b:c1e9/64"

],

 "mac": "08:00:27:6b:c1:e9",

 "name": "enp0s8"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708"

 },

 "user": "agent"

 },

 "timestamp": 1552594758

 }

}

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u

\"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

Example event with check and metric data

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "sensu-go-sandbox.curl_timings.time_total 0.005

1552506033\nsensu-go-sandbox.curl_timings.time_namelookup 0.004",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033

 }

}

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

Example metric-only event

 "spec": {

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033

 }

}

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Filters

Built-in flters

Building flter expressions

Specifcation

Examples

Handling production events

Handling non-production events

Handling state change only

Handling repeated events

Handling events during offce hours only

How do Sensu flters work?

Sensu flters are applied when event handlers are confgured to use one or
more flters. Prior to
executing a handler, the Sensu server will apply any
flters confgured for the handler to the event
data. If the event is not
removed by the flter(s), the handler will be executed. The
flter analysis fow
performs these steps:

When the Sensu server is processing an event, it will check for the defnition
of a handler (or
handlers). Prior to executing each handler, the Sensu
server will frst apply any confgured
flters for the handler.

If multiple flters are confgured for a handler, they are executed
sequentially.

Filter expressions are compared with event data.

Filters can be inclusive (only matching events are handled) or exclusive
(matching events are
not handled).

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/filters/
https://docs.sensu.io/

As soon as a flter removes an event, no further
analysis is performed and the event handler
will not be executed.

NOTE: Filters specifed in a handler set defnition have no effect. Filters must
be specifed
in individual handler defnitions.

Inclusive and exclusive fltering

Filters can be inclusive "action": "allow" (replaces "negate": false in
Sensu 1) or exclusive
"action": "deny" (replaces "negate": true in Sensu
1). Confguring a handler to use multiple
inclusive flters is the equivalent
of using an AND query operator (only handle events if they match
inclusive flter x AND y AND z). Confguring a handler to use multiple
exclusive flters is the
equivalent of using an OR operator (only
handle events if they don’t match x OR y OR z).

Inclusive fltering: by setting the flter defnition attribute "action":
"allow" , only events
that match the defned flter expressions are handled.

Exclusive fltering : by setting the flter defnition attribute "action":
"deny" , events are
only handled if they do not match the defned flter
expressions.

Filter expression comparison

Filter expressions are compared directly with their event data counterparts. For
inclusive flter
defnitions (like "action": "allow"), matching expressions
will result in the flter returning a true

value; for exclusive flter
defnitions (like "action": "deny"), matching expressions will result in the
flter returning a false value, and the event will not pass through the
flter. Filters that return a true
value will continue to be processed via
additional flters (if defned), mutators (if defned), and handlers.

Filter expression evaluation

When more complex conditional logic is needed than direct flter expression
comparison, Sensu flters
provide support for expression evaluation using
Otto. Otto is an ECMAScript 5 (JavaScript) VM,
and
evaluates javascript expressions that are provided in the flter.
There are some caveats to using Otto;
most notably, the regular expressions
specifed in ECMAScript 5 do not all work. See the Otto README
for more details.

Filter assets

Sensu flters can have assets that are included in their execution context.
When valid assets are

https://github.com/robertkrimen/otto

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXX

],

 "flters": [

 "is_incident"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

associated with a flter, Sensu evaluates any
fles it fnds that have a “.js” extension before executing a
flter. The
result of evaluating the scripts is cached for a given asset set, for the
sake of performance.

Built-in flters

Sensu includes built-in flters to help you customize event pipelines for metrics and alerts.
To start
using built-in flters, see the guides to sending Slack alerts and planning maintenances.

Built-in flter: only incidents

The incidents flter is included in every installation of the Sensu backend.
You can use the incidents
flter to allow only high priority events through a Sensu pipeline.
For example, you can use the
incidents flter to reduce noise when sending notifcations to Slack.
When applied to a handler, the
incidents flter allows only warning ("status": 1), critical ("status": 2), and resolution events to
be processed.

To use the incidents flter, include the is_incident flter in the handler confguration flters array:

 "type": "pipe"

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

The is_incident flter applies the following fltering logic:

status allow discard

0

1

2

other

1 –> 0 or 2 –
> 0
(resolution
event)

Built-in flter: allow silencing

Sensu silencing lets you suppress execution of event handlers on an on-demand basis, giving you
the ability to quiet incoming alerts and plan maintenances.

To allow silencing for an event handler, add the not_silenced flter to the handler confguration
flters array:

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXX

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "infux-db",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-infuxdb-handler -d sensu",

When applied to a handler confguration, the not_silenced flter silences events that include the
"silenced": true attribute. The handler in the example above uses both the silencing and

incidents flters, preventing low priority and silenced events from being sent to Slack.

Built-in flter: has metrics

The metrics flter is included in every installation of the Sensu backend.
When applied to a handler, the
metrics flter allows only events containing Sensu metrics to be processed.
You can use the metrics
flter to prevent handlers that require metrics from failing in case of an error in metric collection.

To use the metrics flter, include the has_metrics flter in the handler confguration flters array:

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [

 "has_metrics"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

When applied to a handler confguration, the has_metrics flter allows only events that include a
metrics scope.

Building flter expressions

You can write custom flter expressions as Sensu query expressions using the event data attributes
described in this section.
For more information about event attributes, see the event reference .

Syntax quick reference

operator description

=== / !== Identity operator / Nonidentity operator

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Event atributes available to flters

atribute type description

event.has_check boolean Returns true if the event contains check data

event.has_metrics boolean Returns true if the event contains metrics

event.is_incident boolean Returns true for critical alerts (status 2), warnings
(status 1), and resolution events (status 0

transitioning from status 1 or 2)

event.is_resolution boolean Returns true if the event status is OK (0) and the
previous event was of a non-zero status

event.is_silenced boolean Returns true if the event matches an active silencing
entry

event.timestamp integer Time that the event occurred in seconds since the
Unix epoch

Check atributes available to flters

atribute type description

event.check.annotations map Custom annotations applied to the
check

event.check.command string The command executed by the
check

event.check.cron string Check execution schedule using
cron syntax

event.check.discard_output boolean If the check is confgured to discard
check output from event data

event.check.duration foat Command execution time in

seconds

event.check.env_vars array Environment variables used with
command execution

event.check.executed integer Time that the check was executed in
seconds since the Unix epoch

event.check.handlers array Sensu event handlers assigned to
the check

event.check.high_fap_threshold integer The check’s fap detection high
threshold in percent state change

event.check.history array Check status history for the last 21
check executions

event.check.hooks array Check hook execution data

event.check.interval integer The check execution frequency in
seconds

event.check.issued integer Time that the check request was
issued in seconds since the Unix
epoch

event.check.labels map Custom labels applied to the check

event.check.last_ok integer The last time that the check
returned an OK status (0) in
seconds since the Unix epoch

event.check.low_fap_threshold integer The check’s fap detection low
threshold in percent state change

event.check.max_output_size integer Maximum size, in bytes, of stored
check outputs

event.check.name string Check name

event.check.occurrences integer The number of times an event with
the same status has occurred for

the given entity and check

event.check.occurrences_watermark integer The highest number of occurrences
for the given entity and check at the
current status

event.check.output string The output from the execution of
the check command

event.check.output_metric_format string The metric format generated by the
check command:
nagios_perfdata ,
graphite_plaintext ,
infuxdb_line , or opentsdb_line

event.check.output_metric_handlers array Sensu metric handlers assigned to
the check

event.check.proxy_entity_name string The entity name, used to create a
proxy entity for an external resource

event.check.proxy_requests map Proxy request confguration

event.check.publish boolean If the check is scheduled
automatically

event.check.round_robin boolean If the check is confgured to be
executed in a round-robin style

event.check.runtime_assets array Sensu assets used by the check

event.check.state string The state of the check: passing

(status 0), failing (status other
than 0), or fapping

event.check.status integer Exit status code produced by the
check: 0 (OK), 1 (warning), 2

(critical), or other status (unknown or
custom status)

event.check.stdin boolean If the Sensu agent writes JSON-
serialized entity and check data to

the command process’ STDIN

event.check.subscriptions array Subscriptions that the check
belongs to

event.check.timeout integer The check execution duration
timeout in seconds

event.check.total_state_change integer The total state change percentage
for the check’s history

event.check.ttl integer The time to live (TTL) in seconds
until the event is considered stale

event.metrics.handlers array Sensu metric handlers assigned to
the check

event.metrics.points array Metric data points including a name,
timestamp, value, and tags

Entity atributes available to flters

atribute type description

event.entity.annotations map Custom annotations assigned to
the entity

event.entity.deregister boolean If the agent entity should be
removed when it stops sending
keepalive messages

event.entity.deregistration map A map containing a handler name,
for use when an entity is
deregistered

event.entity.entity_class string The entity type: usually agent or
proxy

event.entity.labels map Custom labels assigned to the
entity

event.entity.last_seen integer Timestamp the entity was last
seen, in seconds since the Unix
epoch

event.entity.name string Entity name

event.entity.redact array List of items to redact from log
messages

event.entity.subscriptions array List of subscriptions assigned to
the entity

event.entity.system map Information about the entity’s
system

event.entity.system.arch string The entity’s system architecture

event.entity.system.hostname string The entity’s hostname

event.entity.system.network map The entity’s network interface list

event.entity.system.os string The entity’s operating system

event.entity.system.platform string The entity’s operating system
distribution

event.entity.system.platform_family string The entity’s operating system
family

event.entity.system.platform_version string The entity’s operating system
version

event.entity.user string Sensu RBAC username used by
the agent entity

Filter specifcation

Top-level atributes

"type": "EventFilter"

type

description Top-level attribute specifying the sensuctl create resource type.
Filters should always be of type EventFilter .

required Required for flter defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For flters
in Sensu backend version 5.0, this attribute should always be core/v2 .

required Required for flter defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the flter, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the flter defnition. This

means that in wrapped-json and yaml formats, the metadata

scope occurs outside the spec scope. See the metadata attributes
reference for details.

"metadata": {

 "name": "flter-weekdays-only",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

required Required for flter defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"spec": {

 "action": "allow",

 "expressions": [

 "event.entity.namespace == 'production'"

],

 "runtime_assets": []

}

spec

description Top-level map that includes the flter spec attributes.

required Required for flter defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Spec atributes

"action": "allow"

action

description Action to take with the event if the flter expressions match. NOTE: see
Inclusive and exclusive fltering for more information.

required true

type String

allowed values allow , deny

example

"expressions": [

 "event.check.team == 'ops'"

]

expressions

description Filter expressions to be compared with event data. Note that event
metadata can be referenced without including the metadata scope,
for example: event.entity.namespace .

required true

type Array

example

runtime_assets

description Assets to be applied to the flter’s execution context. JavaScript fles in
the lib directory of the asset will be evaluated.

"runtime_assets": ["underscore"]

required false

type Array of String

default []

example

Metadata atributes

"name": "flter-weekdays-only"

name

description A unique string used to identify the flter. Filter names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each flter must have a unique name within its namespace.

required true

type String

example

namespace

description The Sensu RBAC namespace that this flter belongs to.

required false

type String

default default

https://regex101.com/r/zo9mQU/2

"namespace": "production"

example

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

labels

description Custom attributes to include with event data, which can be queried like
regular attributes.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Arbitrary, non-identifying metadata to include with event data. In
contrast to labels, annotations are not used internally by Sensu and
cannot be used to identify flters. You can use annotations to add data
that helps people or external tools interacting with Sensu.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_minimum",

 "namespace": "default"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

]

 }

}

{

 "type": "EventFilter",

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

Filter Examples

Minimum required flter atributes

Handling production events

The following flter allows only events with a custom entity label "environment": "production" to
be handled.

 "api_version": "core/v2",

 "metadata": {

 "name": "production_flter",

 "namespace": "default"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.entity.labels.environment == 'production'"

]

 }

}

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "not_production",

 "namespace": "default"

 },

 "spec": {

 "action": "deny",

 "expressions": [

 "event.entity.labels.environment == 'production'"

]

 }

}

Handling non-production events

The following flter discards events with a custom entity label "environment": "production" ,
allowing only events without an environment label or events with environment set to something
other than production to be handled.
Note that action is deny , making this an exclusive flter; if
evaluation
returns false, the event is handled.

Handling state change only

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

 }

}

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_interval_60_hourly",

 "namespace": "default",

 "labels": null,

 "annotations": null

Some teams migrating to Sensu have asked about reproducing the behavior of their
old monitoring
system which alerts only on state change. This
state_change_only inclusive flter provides such.

Handling repeated events

The following example flter defnition, entitled flter_interval_60_hourly ,
will match event data
with a check interval of 60 seconds, and an
occurrences value of 1 (the frst occurrence) -
OR- any occurrences
value that is evenly divisible by 60 via a modulo
operator calculation
(calculating
the remainder after dividing occurrences by 60).

https://en.wikipedia.org/wiki/Modulo_operation

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 60",

 "event.check.occurrences == 1 || event.check.occurrences % 60 == 0"

],

 "runtime_assets": []

 }

}

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_interval_30_hourly",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 30",

 "event.check.occurrences == 1 || event.check.occurrences % 120 == 0"

],

 "runtime_assets": []

 }

}

The next example will apply the same logic as the previous example, but for
checks with a 30 second
interval .

Handling events during offce hours only

This flter evaluates the event timestamp to determine if the event occurred
between 9 AM and 5 PM
UTC on a weekday. Remember that action is equal to
allow , so this is an inclusive flter. If

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "nine_to_fver",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5",

 "hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17"

],

 "runtime_assets": []

 }

}

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "deny_if_failure_in_history",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

evaluation returns false, the event
will not be handled.

Using JavaScript libraries with Sensu flters

You can include JavaScript libraries in their flter execution context with
assets. For instance, assuming
you’ve packaged underscore.js into a Sensu
asset, you could then use functions from the underscore
library for flter
expressions.

 "action": "deny",

 "expressions": [

 "_.reduce(event.check.history, function(memo, h) { return (memo ||

h.status != 0); })"

],

 "runtime_assets": ["underscore"]

 }

}

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Made with #monitoringlove by Sensu, Inc. © 2013-2019

https://twitter.com/hashtag/monitoringlove

Handlers

How do Sensu handlers work?

Pipe handlers

TCP/UDP handlers

Handler sets

Handling keepalive events

Specifcation

Top-level attributes

Spec attributes

Metadata attributes

socket attributes

Examples

How do Sensu handlers work?

Handlers actions are executed by the Sensu backend on events, and there are
several types of
handlers available. The most common handler type is the pipe
handler, which works very similarly
to how checks work, enabling Sensu to
interact with almost any computer program via standard
streams.

Pipe handlers. Pipe handlers pipe event data into arbitrary commands via
 STDIN .

TCP/UDP handlers . TCP and UDP handlers send event data to a remote socket.

Handler sets. Handler sets (also called “set handlers”) are used to group
event handlers,
making it easy to manage groups of actions that should be
executed for certain types of
events.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams
https://docs.sensu.io/sensu-go/5.7/reference/handlers/
https://docs.sensu.io/

Pipe handlers

Pipe handlers are external commands that can consume event data via STDIN.

Pipe handler command

Pipe handler defnitions include a command attribute, which is a command to be
executed by the
Sensu backend.

Pipe handler command arguments

Pipe handler command attributes may include command line arguments for
controlling the behavior
of the command executable.

TCP/UDP handlers

TCP and UDP handlers enable Sensu to forward event data to arbitrary TCP or UDP
sockets for
external services to consume.

Handler sets

Handler set defnitions allow groups of handlers (individual collections
of actions to take on event
data) to be referenced via a single named handler
set.

NOTE: Attributes defned on handler sets do not apply to the handlers they
include. For
example, flters , and mutator attributes defned
in a handler set will have no effect.

Handling keepalive events

Sensu keepalives are the heartbeat mechanism used to ensure that all registered Sensu agents are
operational and able to reach the Sensu backend.
You can connect keepalive events to your
monitoring workfows using a keepalive handler.
Sensu looks for an event handler named keepalive

and automatically uses it to process keepalive events.

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "keepalive",

 "namespace": "default"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack"

]

 }

}

Let’s say you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events .
To process keepalive events using the Slack pipeline, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration looks like this:

Handler specifcation

Top-level atributes

"type": "Handler"

type

description Top-level attribute specifying the sensuctl create resource type.
Handlers should always be of type Handler .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For
handlers in Sensu backend version 5.0, this attribute should always be
core/v2 .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"metadata": {

 "name": "handler-slack",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

metadata

description Top-level collection of metadata about the handler, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the handler defnition. This

means that in wrapped-json and yaml formats, the metadata

scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 },

 "metadata" : {

 "name": "tcp_handler",

 "namespace": "default"

 }

}

spec

description Top-level map that includes the handler spec attributes.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Spec atributes

type

description The handler type.

required true

"type": "pipe"

type String

allowed values pipe , tcp , udp & set

example

"flters": ["occurrences", "production"]

flters

description An array of Sensu event flters (names) to use when fltering events for
the handler. Each array item must be a string.

required false

type Array

example

"mutator": "only_check_output"

mutator

description The Sensu event mutator (name) to use to mutate event data for the
handler.

required false

type String

example

timeout

"timeout": 30

description The handler execution duration timeout in seconds (hard stop). Only
used by pipe and tcp handler types.

required false

type Integer

default 60 (for tcp handler)

example

"command": "/etc/sensu/plugins/pagerduty.go"

command

description The handler command to be executed. The event data is passed to the
process via STDIN .NOTE: the command attribute is only
supported for Pipe handlers (i.e. handlers confgured with
"type": "pipe").

required true (if type equals pipe)

type String

example

env_vars

description An array of environment variables to use with command
execution.NOTE: the env_vars attribute is only supported for
Pipe handlers (i.e. handlers confgured with "type": "pipe").

required false

type Array

"env_vars":

["API_KEY=0428d6b8nb51an4d95nbe28nf90865a66af5"]

example

"socket": {}

socket

description The socket defnition scope, used to confgure the TCP/UDP handler
socket.NOTE: the socket attribute is only supported for
TCP/UDP handlers (i.e. handlers confgured with "type": "tcp"

or "type": "udp").

required true (if type equals tcp or udp)

type Hash

example

"handlers": ["pagerduty", "email", "ec2"]

handlers

description An array of Sensu event handlers (names) to use for events using the
handler set. Each array item must be a string.NOTE: the handlers

attribute is only supported for handler sets (i.e. handlers
confgured with "type": "set").

required true (if type equals set)

type Array

example

runtime_assets

"runtime_assets": ["ruby-2.5.0"]

description An array of Sensu assets (names), required at runtime for the execution
of the command

required false

type Array

example

Metadata atributes

"name": "handler-slack"

name

description A unique string used to identify the handler. Handler names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z). Each handler must have a unique name within its

namespace.

required true

type String

example

namespace

description The Sensu RBAC namespace that this handler belongs to.

required false

type String

default

https://regex101.com/r/zo9mQU/2

"namespace": "production"

default

example

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

labels

description Custom attributes to include with event data, which can be queried like
regular attributes. You can use labels to organize handlers into
meaningful collections that can be selected using flters and tokens.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Arbitrary, non-identifying metadata to include with event data. In
contrast to labels, annotations are not used internally by Sensu and
cannot be used to identify handlers. You can use annotations to add
data that helps people or external tools interacting with Sensu.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

default null

example

socket atributes

"host": "8.8.8.8"

host

description The socket host address (IP or hostname) to connect to.

required true

type String

example

"port": 4242

port

description The socket port to connect to.

required true

type Integer

example

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "pipe_handler_minimum",

 "namespace": "default"

 },

 "spec": {

 "command": "command-example",

 "type": "pipe"

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "tcp_udp_handler_minimum",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

Handler examples

Minimum required pipe handler atributes

Minimum required TCP/UDP handler atributes

This is an example of a tcp type handler. Changing the type from tcp to udp gives you the
minimum confguration for a udp type handler.

 }

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXX

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

Sending slack alerts

This handler will send alerts to a channel named monitoring with the
confgured webhook URL,
using the handler-slack executable command.

Sending event data to a TCP socket

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "tcp_handler",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "udp_handler",

 "namespace": "default"

 },

 "spec": {

 "type": "udp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

This handler will forward event data to a TCP socket (10.0.1.99:4444) and
will timeout if an
acknowledgement (ACK) is not received within 30 seconds.

Sending event data to a UDP socket

The following example will also forward event data but to UDP socket instead
(ex: 10.0.1.99:4444).

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "notify_all_the_things",

 "namespace": "default"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack",

 "tcp_handler",

 "udp_handler"

]

 }

}

Executing multiple handlers

The following example handler will execute three handlers: slack ,
tcp_handler , and
udp_handler .

About Sensu

Made with #monitoringlove by Sensu, Inc. © 2013-2019

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Hooks

Specifcation

Examples

How do hooks work?

Hooks are executed in response to the result of a check command execution
and based on the exit
status code of that command (ex: 1).
Hook commands can optionally receive JSON serialized Sensu
client data via
STDIN.
You can create, manage, and reuse hooks independently of checks.

Check response types

Each type of response (ex: non-zero) can contain one or more hooks, and
correspond to one or
more exit status code. Hooks are executed, in order of
precedence, based on their type:

1. 1 to 255

2. ok

3. warning

4. critical

5. unknown

6. non-zero

You can assign one or more hooks to a check in the check defnition.
See the check specifcation to
confgure the check_hooks attribute.

Check hooks

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/hooks/
https://docs.sensu.io/

The hook command output, status, executed timestamp and duration are captured
and published in
the resulting event.

Hooks specifcation

Top-level atributes

"type": "HookConfg"

type

description Top-level attribute specifying the sensuctl create resource type.
Hooks should always be of type HookConfg .

required Required for hook defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For
hooks in Sensu backend version 5.0, this attribute should always be
core/v2 .

required Required for hook defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"metadata": {

 "name": "process_tree",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

metadata

description Top-level collection of metadata about the hook, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the hook defnition. This

means that in wrapped-json and yaml formats, the metadata

scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for hook defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"spec": {

spec

description Top-level map that includes the hook spec attributes.

required Required for hook defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

 "command": "ps aux",

 "timeout": 60,

 "stdin": false

}

Spec atributes

"command": "sudo /etc/init.d/nginx start"

command

description The hook command to be executed.

required true

type String

example

"timeout": 30

timeout

description The hook execution duration timeout in seconds (hard stop).

required false

type Integer

default 60

example

stdin

"stdin": true

description If the Sensu agent writes JSON serialized Sensu entity and check data
to the command process’ STDIN. The command must expect the JSON
data via STDIN, read it, and close STDIN. This attribute cannot be used
with existing Sensu check plugins, nor Nagios plugins etc, as Sensu
agent will wait indefnitely for the hook process to read and close STDIN.

required false

type Boolean

default false

example

Metadata atributes

"name": "process_tree"

name

description A unique string used to identify the hook. Hook names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each hook must have a unique name within its namespace.

required true

type String

example

namespace

description The Sensu RBAC namespace that this hook belongs to.

https://regex101.com/r/zo9mQU/2

"namespace": "production"

required false

type String

default default

example

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

labels

description Custom attributes to include with event data, which can be queried like
regular attributes. You can use labels to organize hooks into meaningful
collections that can be selected using flters and tokens.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Arbitrary, non-identifying metadata to include with event data. In
contrast to labels, annotations are not used internally by Sensu and
cannot be used to identify hooks. You can use annotations to add data
that helps people or external tools interacting with Sensu.

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "restart_nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "sudo systemctl start nginx",

 "timeout": 60,

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Examples

Rudimentary auto-remediation

Hooks can be used for rudimentary auto-remediation tasks, for example, starting
a process that is no
longer running.

NOTE: Using hooks for auto-remediation should be approached
carefully, as they run
without regard to the number of event
occurrences.

 "stdin": false

 }

}

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "process_tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "ps aux",

 "timeout": 60,

 "stdin": false

 }

}

Capture the process tree

Hooks can also be used for automated data gathering for incident triage, for
example, a check hook
could be used to capture the process tree when a process
has been determined to be not running
etc.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

License management

Enterprise features for Sensu Go are available in version 5.2.0 and later.
See the upgrade guide to
upgrade your Sensu installation, and visit the latest documentation to manage your enterprise
license.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/reference/license
https://docs.sensu.io/sensu-go/5.7/reference/license/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Mutators

Built-in mutators

Specifcation

Examples

How do mutators work?

A handler can specify a mutator to transform event data. Mutators are executed
prior to the execution
of a handler. If the mutator executes successfully, the modifed event
data is returned to the handler,
and the handler is then executed. If the mutator
fails to execute, an error will be logged, and the
handler will not be executed.

When Sensu server processes an event, it will check the handler for the
presence of a
mutator, and execute that mutator before executing the handler.

If the mutator executes successfully (it returns an exit status code of 0), modifed
event data is
provided to the handler, and the handler is executed.

If the mutator fails to execute (it returns a non-zero exit status code, or
fails to complete within
its confgured timeout), an error will be logged and
the handler will not execute.

Mutator specifcation

Accepts input/data via STDIN

Able to parse JSON event data

Outputs JSON data (modifed event data) to STDOUT or STDERR

Produces an exit status code to indicate state:

0 indicates OK status

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/mutators/
https://docs.sensu.io/

 exit codes other than 0 indicate failure

Commands

Each Sensu mutator defnition defnes a command to be executed. Mutator commands are
executable commands which will be executed on a Sensu server, run as the sensu user . Most
mutator commands are provided by Sensu Plugins.

Sensu mutator command attributes may include command line arguments for
controlling the
behavior of the command executable. Many Sensu mutator plugins
provide support for command line
arguments for reusability.

How and where are mutator commands executed?

As mentioned above, all mutator commands are executed by a Sensu server as the sensu user.
Commands must be executable fles that are discoverable on the Sensu server system (installed in a
system $PATH directory).

NOTE: By default, the Sensu installer packages will modify the system $PATH for the
Sensu processes to include /etc/sensu/plugins . As a result, executable scripts (like
plugins) located in /etc/sensu/plugins will be valid commands. This allows command

attributes to use “relative paths” for Sensu plugin commands, for example: "command":

"check-http.go -u https://sensuapp.org" .

Built-in mutators

Sensu includes built-in mutators to help you customize event pipelines for metrics and alerts.

Built-in mutator: only check output

To process an event, some handlers require only the check output, not the entire event defnition.
For example, when sending metrics to Graphite using a TCP handler, Graphite expects data that
follows the Graphite plaintext protocol. By using the built-in only_check_output mutator, Sensu
reduces the event to only the check output, so it can be accepted by Graphite.

To use the only check output mutator, include the only_check_output mutator in the handler
confguration mutator string:

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "graphite",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 2003

 },

 "mutator": "only_check_output"

 }

}

Mutators specifcation

Top-level atributes

"type": "Mutator"

type

description Top-level attribute specifying the sensuctl create resource type.
Mutators should always be of type Mutator .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"api_version": "core/v2"

api_version

description Top-level attribute specifying the Sensu API group and version. For
mutators in Sensu backend version 5.0, this attribute should always be
core/v2 .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

"metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

metadata

description Top-level collection of metadata about the mutator, including the
name and namespace as well as custom labels and
annotations . The metadata map is always at the top level of the

mutator defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. See
the metadata attributes reference for details.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

}

"spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

spec

description Top-level map that includes the mutator spec attributes.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Spec atributes

"command": "/etc/sensu/plugins/mutated.go"

command

description The mutator command to be executed by Sensu server.

required true

type String

example

"env_vars": ["RUBY_VERSION=2.5.0"]

env_vars

description An array of environment variables to use with command execution.

required false

type Array

example

"timeout": 30

timeout

description The mutator execution duration timeout in seconds (hard stop).

required false

type integer

example

"runtime_assets": ["ruby-2.5.0"]

runtime_assets

description An array of Sensu assets (names), required at runtime for the execution
of the command

required false

type Array

example

Metadata atributes

"name": "example-mutator"

name

description A unique string used to identify the mutator. Mutator names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z). Each mutator must have a unique name within its

namespace.

required true

type String

example

"namespace": "production"

namespace

description The Sensu RBAC namespace that this mutator belongs to.

required false

type String

default default

example

labels

description Custom attributes to include with event data, which can be queried like
regular attributes. You can use labels to organize mutators into
meaningful collections that can be selected using flters and tokens.

https://regex101.com/r/zo9mQU/2

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

annotations

description Arbitrary, non-identifying metadata to include with event data. In
contrast to labels, annotations are not used internally by Sensu and
cannot be used to identify mutators. You can use annotations to add
data that helps people or external tools interacting with Sensu.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

}

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "mutator_minimum",

 "namespace": "default"

 },

 "spec": {

 "command": "example_mutator.go"

 }

Examples

The following Sensu mutator defnition uses an imaginary Sensu plugin called example_mutator.go

to modify event data prior to handling the event.

Mutator defnition

Minimum required mutator atributes

}

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Role-based access control

Namespaces: Managing namespaces | Specifcation | Examples

Resources: Namespaced resource types | Cluster-wide resource types

Users: Managing users | Specifcation | Examples | Groups

Roles and cluster roles: Managing roles | Specifcation | Examples

Role bindings and cluster role bindings: Managing role bindings | Specifcation | Examples

Example workfows

Sensu role-based access control (RBAC) helps different teams and projects share a Sensu instance.
RBAC allows management and access of users and resources based on namespaces, groups,
roles, and bindings.

Namespaces partition resources within Sensu. Sensu entities, checks, handlers, and other
namespaced resources belong to a single namespace.

Roles create sets of permissions (get, delete, etc.) tied to resource types. Cluster roles
apply permissions across namespaces and include access to cluster-wide resources like
users and namespaces.

Users represent a person or agent that interacts with Sensu. Users can belong to one or
more groups.

Role bindings assign a role to a set of users and groups within a namespace; cluster role
bindings assign a cluster role to a set of users and groups cluster-wide.

Sensu access controls apply to sensuctl, the Sensu API, and the Sensu dashboard.

Namespaces

Namespaces help teams use different resources (entities, checks, handlers, etc.) within Sensu and

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/rbac/
https://docs.sensu.io/

sensuctl namespace list

sensuctl namespace create production

impose their own controls on those resources.
A Sensu instance can have multiple namespaces, each
with their own set of managed resources.
Resource names need to be unique within a namespace,
but not across namespaces.

To create and manage namespaces, confgure sensuctl as the default admin user or create a
cluster role with namespaces permissions.

Default namespace

Every Sensu backend includes a default namespace.
All resources created without a specifed
namespace are created within the default namespace.

Viewing namespaces

You can use sensuctl to view all namespaces within Sensu:

Creating a namespace

You can use sensuctl to create a namespace.
For example, the following command creates a
namespace called production :

Namespace names can contain alphanumeric characters and hyphens, but must begin and end
with an alphanumeric character.

Managing namespaces

You can use sensuctl to view, create, and delete namespaces.

To delete a namespace:

sensuctl namespace delete [NAMESPACE-NAME]

sensuctl namespace help

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": ["slack"],

 "interval": 30,

 "subscriptions": ["system"],

 "timeout": 0,

 "ttl": 0

 }

}

To get help managing namespaces with sensuctl:

Assigning a resource to a namespace

You can assign a resource to a namespace in the resource defnition.
Only resources belonging to a
namespaced resource type (like checks, flters, and handlers) can be assigned to a namespace.

For example, to assign a check called check-cpu to the production namespace, include the
namespace attribute in the check defnition:

See the reference docs for the corresponding resource type to create resource defnitions.

{

 "type": "Namespace",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "name": "default"

 }

}

Namespace specifcation

Atributes

"name": "production"

name

description The name of the namespace. Names can contain alphanumeric
characters and hyphens, but must begin and end with an alphanumeric
character.

required true

type String

example

Namespace example

The following example is in wrapped-json format for use with sensuctl create .

Resources

Permissions within Sensu are scoped to resource types, like checks, handlers, and users.
You can use
resource types to confgure permissions in Sensu roles and cluster roles.

Namespaced resource types

Namespaced resources must belong to a single namespace and can be accessed by roles and
cluster roles.

Type Description

assets Asset resources within a namespace

checks Check resources within a namespace

entities Entity resources within a namespace

events Event resources within a namespace

extensions Placeholder type

flters Filter resources within a namespace

handlers Handler resources within a namespace

hooks Hook resources within a namespace

mutators Mutator resources within a namespace

rolebindings Namespace-specifc role assigners

roles Namespace-specifc permission sets

silenced Silencing resources within a namespace

Cluster-wide resource types

Cluster-wide resources cannot be assigned to a namespace and can only be accessed by cluster
roles.

Type Description

cluster Sensu clusters running multiple Sensu backends

clusterrolebindings Cluster-wide role assigners

clusterroles Cluster-wide permission sets

namespaces Resource partitions within a Sensu instance

users People or agents interacting with Sensu

Special resource types

Special resources types can be accessed by both roles and cluster roles.

Type Description

* All resources within Sensu. The * type takes precedence over
other rules within the same role. If you wish to deny a certain type,
you can’t use the * type and must explicitly allow every type required.
When applied to a role, the * type applies only to namespaced
resource types. When applied to a cluster role, the * type applies to
both namespaced resource types and cluster-wide resource types .

Users

A user represents a person or an agent which interacts with Sensu.
Users and groups can be assigned
one or more roles and inherit all permissions from each role assigned to them.

You can use your Sensu username and password to confgure sensuctl or log in to the dashboard.

Default user

By default, Sensu includes a global admin user that you can use to manage Sensu and create new

sensuctl user change-password

sensuctl user list --format yaml

users.

atribute value

username admin

password P@ssw0rd!

groups cluster-admins

cluster role cluster-admin

cluster role binding cluster-admin

We strongly recommended changing the default password for the admin user immediately.
Once
authenticated, you can change the password using the change-password command.

Sensu also includes an agent user that is used internally by the Sensu agent.
You can confgure an
agent’s user credentials using the user and password agent confguration fags.

Viewing users

You can use sensuctl to see a list of all users within Sensu.
The following example returns a list of
users in yaml format for use with sensuctl create .

Creating a user

You can use sensuctl to create a user.
For example, the following command creates a user with the
username alice , creates a password, and assigns the user to the ops and dev groups.
Passwords
must have at least eight characters.

sensuctl user create alice --password='password' --groups=ops,dev

sensuctl user change-password USERNAME

sensuctl user disable USERNAME

sensuctl user reinstate USERNAME

Assigning user permissions

To assign permissions to a user:

1. Create the user.

2. Create a role or (for cluster-wide access) a cluster role.

3. Create a role binding (or cluster role binding) to assign the role to the user.

Managing users

To change the password for a user:

To disable a user:

To re-enable a disabled user:

User specifcation

Atributes

username

"username": "alice"

description The name of the user. Cannot contain special characters.

required true

type String

example

"password": "P@ssw0rd!"

password

description The user’s password. Passwords must have at least eight characters.

required true

type String

example

"groups": ["dev", "ops"]

groups

description Groups to which the user belongs.

required false

type Array

example

disabled

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "username": "alice",

 "password": "P@ssw0rd!",

 "disabled": false,

 "groups": ["ops", "dev"]

 }

}

"disabled": false

description The state of the user’s account.

required false

type Boolean

default false

example

User example

The following example is in wrapped-json format for use with sensuctl create .

Groups

A group is a set of users within Sensu.
Groups can be assigned one or more roles and inherit all
permissions from each role assigned to them.
Users can be assigned to one or more groups.
Groups
are not a resource type within Sensu; you can create and manage groups only within user defnitions.

sensuctl user add-group USERNAME GROUP

sensuctl user set-groups USERNAME GROUP1[,GROUP2, ...[,GROUPN]]

sensuctl user remove-group USERNAME GROUP

sensuctl user remove-groups USERNAME

Default group

Sensu includes a default cluster-admins group that contains the default admin user and a
system:agents group used internally by Sensu agents.

Assigning a user to a group

Groups are created and managed within user defnitions.
You can use sensuctl to add users to groups.

To add a user to a group:

To set the groups for a user:

Removing a user from a group

You can use sensuctl to remove users from groups.

To remove a user from a group:

To remove a user from all groups:

Roles and cluster roles

A role is a set of permissions controlling access to Sensu resources.
Roles specify permissions for
resources within a namespace while cluster roles can include permissions for cluster-wide
resources.
You can use roles bindings to assign roles to user and groups.
To avoid re-creating
commonly used roles in each namespace, create a cluster role and use a role binding (not a cluster
role binding) to restrict permissions within a specifc namespace.

To create and manage roles cluster-wide, confgure sensuctl as the default admin user or create a
cluster role with roles permissions.
To create and manage roles within a namespace, create a role
with roles permissions within that namespace.

Cluster roles

Cluster roles can specify access permissions for cluster-wide resources like users and namespaces
as well as namespaced resources like checks and handlers. They can also be used to grant access
to namespaced resources across all namespaces (needed to run
sensuctl check list --all-namespaces , for example) when used in conjunction with cluster role

bindings.
Cluster roles use the same specifcation as roles and can be managed using the same
sensuctl commands with cluster-role substituted for role .

To create and manage cluster roles, confgure sensuctl as the default admin user or create a
cluster role with permissions for clusterroles .

Default roles

Every Sensu backend includes:

Role name Type Description

cluster-admin ClusterRole Full access to all resource types across
namespaces, including access to cluster-wide
resource types.

admin ClusterRole Full access to all resource types. You can apply this
cluster role within a namespace by using a role
binding (not a cluster role binding).

edit ClusterRole Read and write access to most resources with the

sensuctl role list

sensuctl role info admin

sensuctl cluster-role list

sensuctl role create prod-admin --verb get,list,create,update,delete --resource

exception of roles and role bindings. You can apply
this cluster role within a namespace by using a role
binding (not a cluster role binding).

view ClusterRole Read-only permission to most resource types with
the exception of roles and role bindings. You can
apply this cluster role within a namespace by using
a role binding (not a cluster role binding).

system:agent ClusterRole Used internally by Sensu agents. You can confgure
an agent’s user credentials using the user and
password agent confguration fags.

Viewing roles

You can use sensuctl to see a list of roles within Sensu:

To see the permissions and scope for a specifc role:

To view cluster roles, use the cluster-role command:

Creating a role

You can use sensuctl to create a role.
For example, the following command creates an admin role
restricted to the production namespace.

* --namespace production

sensuctl role-binding create prod-admin-oncall --role=prod-admin --group=oncall

sensuctl cluster-role create global-event-reader --verb get,list --resource

events

sensuctl edit roles [ROLE-NAME] [fags]

sensuctl role delete [ROLE-NAME]

Once you’ve create the role, create a role binding (or cluster role binding) to assign the role to users
and groups.
For example, to assign the prod-admin role created above to the oncall group, create
the following role binding.

Creating a cluster-wide role

You can use sensuctl to create a cluster role.
For example, the following command creates a global
event reader role that can read only events across all namespaces within Sensu.

Managing roles

You can use sensuctl to view, create, edit, and delete roles.
To use any of these commands with
cluster roles, substitute the cluster-role command for the role command.

To edit a role:

To delete a role:

To get help managing roles with sensuctl:

sensuctl role help

Role and cluster role specifcation

Role atributes

"name": "admin"

name

description Name of the role

required true

type String

example

"namespace": "production"

namespace

description Namespace the role is restricted to. This attribute is not available for
cluster roles.

required false

type String

example

rules

description The rulesets that a role applies.

"rules": [

 {

 "verbs": ["get", "list"],

 "resources": ["checks"],

 "resource_names": [""]

 }

]

required true

type Array

example

Rule atributes

A rule is an explicit statement which grants a particular permission to a resource.

"verbs": ["get", "list"]

verbs

description The permissions to be applied by the rule: get , list , create ,
update , or delete .

required true

type Array

example

resources

description The type of resource that the rule has permission to access. Roles can
only access namespaced resource types while cluster roles can access
namespaced and cluster-wide resource types . See resource types for

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "namespaced-resources-all-verbs",

 "namespace": "default"

 },

 "spec": {

"resources": ["checks"]

available types.

required true

type Array

example

"resource_names": ["check-cpu"]

resource_names

description Specifc resource names that the rule has permission to access.
Resource name permissions are only available for get , delete , and
update verbs.

required false

type Array

example

Role example

The following example is in wrapped-json format for use with sensuctl create .

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "all-resources-all-verbs"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced",

 "cluster", "clusterrolebindings", "clusterroles",

 "namespaces", "users"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

Cluster role example

The following example is in wrapped-json format for use with sensuctl create .

sensuctl role-binding list

sensuctl role-binding info [BINDING-NAME]

sensuctl cluster-role-binding list

Role bindings and cluster role bindings

A role binding assigns a role or cluster role to users and groups within a namesapce.
A cluster
role binding assigns a cluster role to users and groups across namespaces and resource types.

To create and manage role bindings within a namespace, create a role with rolebindings
permissions within that namespace, and log in by confguring sensuctl.

Cluster role bindings

Cluster roles bindings can assign a cluster role to users and groups.
Cluster role bindings use the
same specifcation as role bindings and can be managed using the same sensuctl commands with
cluster-role-binding substituted for role-binding .

To create and manage cluster role bindings, confgure sensuctl as the default admin user or create
a cluster role with permissions for clusterrolebindings .

Viewing role bindings

You can use sensuctl to see a list of role bindings within Sensu:

To see the details for a specifc role binding:

To see a list of cluster role bindings:

sensuctl role-binding create [NAME] --role=NAME [--user=username] [--

group=groupname]

sensuctl role-binding create [NAME] --cluster-role=NAME [--user=username] [--

group=groupname]

sensuctl cluster-role-binding create [NAME] --cluster-role=NAME [--

user=username] [--group=groupname]

sensuctl role-binding delete [ROLE-NAME]

sensuctl role-binding help

Creating a role binding

You can use sensuctl to see a create a role binding that assigns a role:

Or a role binding that assigns a cluster role:

To create a cluster role binding:

Managing role bindings

You can use sensuctl to see a list, create, and delete role bindings and cluster role bindings.
To use
any of these commands with cluster roles, substitute the cluster-role-binding command for
the role-binding command.

To delete a role binding:

To get help managing role bindings with sensuctl:

Role binding and cluster role binding specifcation

"roleRef": {

 "type": "Role",

 "name": "event-reader"

}

roleRef

description References a role in the current namespace or a cluster role.

required true

type Hash

example

"subjects": [

 {

 "type": "User",

 "name": "alice"

 }

]

subjects

description The users or groups being assigned.

required true

type Array

example

roleRef specifcation

"type": "Role"

type

description Role for a role binding or ClusterRole for a cluster role binding.

required true

type String

example

"name": "event-reader"

name

description The name of the role or cluster role being assigned.

required true

type String

example

subjects specifcation

type

description User for assigning a user or Group for assigning a group.

required true

type String

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "event-reader-binding",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "event-reader",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "bob",

 "type": "User"

"type": "User"

example

"name": "alice"

name

description Username or group name.

required true

type String

example

Role binding example

The following example is in wrapped-json format for use with sensuctl create .

 }

]

 }

}

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "cluster-admin"

 },

 "spec": {

 "role_ref": {

 "name": "cluster-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "cluster-admins",

 "type": "Group"

 }

]

 }

}

{

Cluster role binding example

The following example is in wrapped-json format for use with sensuctl create .

Role and role binding examples

The following role and role binding give a dev group access to create and manage Sensu workfows
within the default namespace.

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "workfow-creator",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": ["checks", "hooks", "flters", "events", "flters",

"mutators", "handlers"],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "dev-binding",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "workfow-creator",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "dev",

 "type": "Group"

 }

]

 }

}

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice"

 }

}

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

Example workfows

Assigning user permissions within a namespace

Assigning group permissions within a namespace

Assigning group permissions across all namespaces

Assigning user permissions within a namespace

To assign permissions to a user:

1. Create the user.

2. Create a role .

3. Create a role binding to assign the role to the user.

For example, the following confguration creates a user alice , a role default-admin , and a role
binding alice-default-admin , giving alice full permissions for namespaced resource types
within the default namespace.
You can add these resources to Sensu using sensuctl create .

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "alice-default-admin",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "alice",

 "type": "User"

 }

]

 }

}

Assigning group permissions within a namespace

To assign permissions to group of users:

1. Create at least once user assigned to a group .

2. Create a role .

3. Create a role binding to assign the role to the group.

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice"

 }

}

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-default-admin",

For example, the following confguration creates a user alice assigned to the group ops , a role
default-admin , and a role binding ops-default-admin , giving the ops group full permissions for

namespaced resource types within the default namespace.
You can add these resources to Sensu
using sensuctl create .

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

PRO TIP: To avoid re-creating commonly used roles in each namespace, create a cluster
role and use a role binding to restrict permissions within a specifc namespace.

Assigning group permissions across all namespaces

To assign cluster-wide permissions to group of users:

1. Create at least once user assigned to a group .

2. Create a cluster role .

3. Create a cluster role binding) to assign the role to the group.

For example, the following confguration creates a user alice assigned to the group ops , a cluster
role default-admin , and a cluster role binding ops-default-admin , giving the ops group full
permissions for namespaced resource types and cluster-wide resource types across all namespaces.
You can add these resources to Sensu using sensuctl create .

 "disabled": false,

 "username": "alice",

 "groups": ["ops"]

 }

}

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced",

 "cluster", "clusterrolebindings", "clusterroles",

 "namespaces", "users"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-default-admin"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Sensu query expressions

Specifcation

Examples

How do Sensu query expressions work?

Sensu query expressions (SQE) are based on JavaScript expressions, and
provide additional
functionalities for Sensu usage (like nested parameters and
custom functions) so Sensu resources
can be directly evaluated. SQE should
always return true or false.

Syntax quick reference

operator description

=== / !== Identity operator / Nonidentity operator

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Sensu query expressions specifcation

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://github.com/robertkrimen/otto
https://docs.sensu.io/sensu-go/5.7/reference/sensu-query-expressions/
https://docs.sensu.io/

// event.timestamp equals to 1520275913, which is Monday, March 5, 2018 6:51:53

PM UTC

// The following expression returns true

hour(event.timestamp) >= 17

// event.timestamp equals to 1520275913, which is Monday, March 5, 2018 6:51:53

PM UTC

// The following expression returns false

weekday(event.timestamp) == 0

event.entity.namespace == 'production'

Sensu query expressions are valid ECMAScript 5 (JavaScript) expressions that return
 true or false.
Other values are not allowed. If other values are
returned, an error is logged and the flter evaluates to
false.

Custom functions

hour : returns the hour, in UTC and in the 24-hour time notation, of a UNIX
Epoch time.

weekday : returns a number representing the day of the week, where Sunday
equals 0 , of a
UNIX Epoch time.

Sensu query expressions examples

Evaluating an event atribute

The following example returns true if the event’s entity contains a custom
attribute named
namespace that is equal to production .

Evaluating an array

entity.subscriptions.indexOf('system') >= 0

weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17

To evaluate an attribute that contains an array of elements, use the .indexOf method.
The following
example returns true if an entity includes the subscription system .

Evaluating the day of the week

The following example returns true if the event occurred on a weekday.

Evaluating offce hours

The following example returns true if the event occurred between 9 AM and 5 PM
UTC.

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Silencing

Specifcation

Examples

Silence all checks on a specifc entity

Silence a specifc check on a specifc entity

Silence all checks on entities with a specifc subscription

Silence a specifc check on entities with a specifc subscription

Silence a specifc check on every entity

Deleting silencing entries

How does silencing work?

Silencing entries are created on an ad-hoc basis via sensuctl . When silencing
entries are
successfully created, they are assigned a name in the format
 $SUBSCRIPTION:$CHECK , where
$SUBSCRIPTION is the name of a Sensu entity
subscription and $CHECK is the name of a Sensu

check. Silencing entries can be
used to silence checks on specifc entities by taking advantage of per-
entity
subscriptions, for example: entity:$ENTITY_NAME . When the check name and/or
subscription
described in a silencing entry match an event and a handler use the
not_silenced built-in flter, this
handler will not be executed.

These silencing entries are persisted in the Sensu data store. When the Sensu
server processes
subsequent check results, matching silencing entries are
retrieved from the store. If one or more
matching entries exist, the event is
updated with a list of silenced entry names. The presence of
silencing entries
indicates that the event is silenced.

When creating a silencing entry, a combination of check and subscription can be
specifed, but only
one or the other is strictly required.

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/5.7/reference/silencing/
https://docs.sensu.io/

For example, when a silencing entry is created specifying only a check, its name
will contain an
asterisk (or wildcard) in the $SUBSCRIPTION position. This
indicates that any event with a matching
check name will be marked as silenced,
regardless of the originating entities’ subscriptions.

Conversely, a silencing entry which specifes only a subscription will have a
name with an asterisk in
the $CHECK position. This indicates that any event
where the originating entities’ subscriptions match
the subscription specifed
in the entry will be marked as silenced, regardless of the check name.

Silencing specifcation

Silenced entry names

Silencing entries must contain either a subscription or check name, and are
identifed by the
combination of $SUBSCRIPTION:$CHECK . If a check or
subscription is not provided, it will be
substituted with a wildcard (asterisk):
$SUBSCRIPTION:* or *:$CHECK .

Top-level atributes

"type": "Silenced"

type

description Top-level attribute specifying the sensuctl create resource type.
Silencing entries should always be of type Silenced .

required Required for silencing entry defnitions in wrapped-json or yaml

format for use with sensuctl create .

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
silencing entries in Sensu backend version 5.0, this attribute should

"api_version": "core/v2"

always be core/v2 .

required Required for silencing entry defnitions in wrapped-json or yaml

format for use with sensuctl create .

type String

example

"metadata": {

 "name": "appserver:mysql_status",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 }

metadata

description Top-level collection of metadata about the silencing entry, including the
name and namespace as well as custom labels and
annotations . The metadata map is always at the top level of the

silencing entry defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. See
the metadata attributes reference for details.

required Required for silencing entry defnitions in wrapped-json or yaml

format for use with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the silencing entry spec attributes.

"spec": {

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

 "check": null,

 "subscription": "entity:i-424242",

 "begin": 1542671205

}

required Required for silencing entries in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Spec atributes

"check": "haproxy_status"

check

description The name of the check the entry should match

required true, unless subscription is provided

type String

example

subscription

description The name of the subscription the entry should match

required true, unless check is provided

"subscription": "entity:i-424242"

type String

example

"begin": 1512512023

begin

description Time at which silence entry goes into effect, in epoch.

required false

type Integer

example

"expire": 3600

expire

description Number of seconds until this entry should be deleted.

required false

type Integer

default -1

example

expire_on_resolve

description If the entry should be deleted when a check begins return OK status
(resolves).

"expire_on_resolve": true

required false

type Boolean

default false

example

"creator": "Application Deploy Tool 5.0"

creator

description Person/application/entity responsible for creating the entry.

required false

type String

default null

example

"reason": "rebooting the world"

reason

description Explanation for the creation of this entry.

required false

type String

default null

example

Metadata atributes

"name": "appserver:mysql_status"

name

description Silencing identifer generated from the combination of a subscription
name and check name.

required false - This value cannot be modifed.

type String

example

"namespace": "production"

namespace

description The Sensu RBAC namespace that this silencing entry belongs to.

required false

type String

default default

example

labels

description Custom attributes to include with event data, which can be queried like
regular attributes.

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#monitoring",

 "playbook": "www.example.url"

}

annotations

description Arbitrary, non-identifying metadata to include with event data. You can
use annotations to add data that helps people or external tools
interacting with Sensu.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Examples

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "entity:i-424242:*",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

 "check": null,

 "subscription": "entity:i-424242",

 "begin": 1542671205

 }

}

{

 "subscription": "entity:i-424242",

 "check": "check_ntp",

 "expire_on_resolve": true

}

Silence all checks on a specifc entity

Assume a Sensu entity i-424242 which we wish to silence any alerts on. We’ll
do this by taking
advantage of per-entity subscriptions:

Silence a specifc check on a specifc entity

Following on the previous example, silence a check named check_ntp on entity
i-424242 ,
ensuring the entry is deleted once the underlying issue has been
resolved:

{

 "subscription": "appserver"

}

{

 "subscription": "appserver",

 "check": "mysql_status"

}

The optional expire_on_resolve attribute used here indicates that when the
server processes a
matching check from the specifed entity with status OK, this
silencing entry will automatically be
removed.

When used in combination with other attributes (like creator and reason), this
provides Sensu
operators with a method of acknowledging that they have received
an alert, suppressing additional
notifcations, and automatically clearing the
silencing entry when the check status returns to normal.

Silence all checks on entities with a specifc subscription

In this case, we’ll completely silence any entities subscribed to appserver .
Just as in the example of
silencing all checks on a specifc entity, we’ll
create a silencing entry specifying only the appserver

subscription:

Silence a specifc check on entities with a specifc subscription

Assume a check mysql_status which we wish to silence, running on Sensu
entities with the
subscription appserver :

Silence a specifc check on every entity

To silence the check mysql_status on every entity in our infrastructure,
regardless of subscriptions,
we only need to provide the check name:

{

 "check": "mysql_status"

}

{

 "name": "appserver:*"

}

{

 "name": "*:mysql_status"

}

Deleting silencing entries

To delete a silencing entry, you will need to provide its name. Subscription only
silencing entry names
will be similar to this:

Check only silencing entry names will be similar to this:

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Made with #monitoringlove by Sensu, Inc. © 2013-2019

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Tessen

Tessen is available in version 5.5.0 and later.
See the upgrade guide to upgrade your Sensu installation,
and visit the latest reference documentation .

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://docs.sensu.io/sensu-go/latest/installation/upgrade
https://docs.sensu.io/sensu-go/latest/reference/tessen
https://docs.sensu.io/sensu-go/5.7/reference/tessen/
https://docs.sensu.io/

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

Tokens

Specifcation

Examples

Tokens are placeholders included in a check defnition that the agent replaces with entity information
before executing the check.
You can use tokens to fne-tune check attributes (like alert thresholds) on
a per-entity level while re-using the check defnition.

How do tokens work?

When a check is scheduled to be executed by an agent, it frst goes through a token substitution
step. The agent replaces any tokens with matching attributes from the entity defnition, and then the
check is executed. Invalid templates or unmatched tokens will return an error, which is logged and
sent to the Sensu backend message transport. Checks with token matching errors will not be
executed.

Managing entity labels

You can use token substitution with any defned entity attributes, including custom labels.
See the
entity reference for information on managing entity labels for proxy entities and agent entities.

Sensu token specifcation

Sensu Go uses the Go template package to implement token substitution.
Sensu Go token
substitution uses double curly braces around the token, and a dot before the attribute to be
substituted, such as: {{ .system.hostname }} .

You're viewing documentation for an older or pre-release version of Sensu Go. Click here for the latest.

 Sensu Docs

https://golang.org/pkg/text/template/
https://docs.sensu.io/sensu-go/5.7/reference/tokens/
https://docs.sensu.io/

error: unmatched token: template: :1:22: executing "" at <.system.hostname>: map

has no entry for key "System"

Token substitution syntax

Tokens are invoked by wrapping references to entity attributes and labels with double curly braces,
such as {{ .name }} to substitute an entity’s name. Nested Sensu entity attributes can be
accessed via dot notation (ex: system.arch).

{{ .name }} would be replaced with the entity name attribute

{{ .labels.url }} would be replaced with a custom label called url

{{ .labels.disk_warning }} would be replaced with a custom label called
disk_warning

Token substitution default values

In the event that an attribute is not provided by the entity, a token’s default
value will be substituted.
Token default values are separated by a pipe character and the word default (| default), and
can be used to provide a “fallback value” for entities that are missing a specifed token attribute.

{{.labels.url | default "https://sensu.io"}} would be replaced with a custom
label called url . If no such attribute called url is included in the entity defnition, the
default (or fallback) value of https://sensu.io will be used to substitute the token.

Unmatched tokens

If a token is unmatched during check preparation, the agent check handler will return an error, and
the check will not be executed. Unmatched token errors will look similar to the following:

Check confg token errors will be logged by the agent, and sent to Sensu backend message transport
as a check failure.

Examples

{

 "type": "CheckConfg",

 "api_version": "core/v1",

 "metadata": {

 "name": "check-disk-usage",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "check-disk-usage.rb -w {{.labels.disk_warning | default 80}} -c

{{.labels.disk_critical | default 90}}",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "staging"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "env_vars": null

 }

}

Token substitution for check thresholds

In this example check confguration, the check-disk-usage.go command accepts -w (warning)
and -c (critical)
arguments to indicate the thresholds (as percentages) for creating warning or critical
events. If no token substitutions are provided by an entity confguration, Sensu will use default values
to create a warning event at 80% disk capacity (i.e. {{ .labels.disk_warning | default 80 }}),
and a critical event at 90% capacity (i.e. {{ .labels.disk_critical | default 90 }}).

The following example entity would provide the necessary
attributes to override the

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "example-hostname",

 "namespace": "default",

 "labels": {

 "disk_warning": "80",

 "disk_critical": "90"

 },

 "annotations": null

 },

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "example-hostname",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

.labels.disk_warning and labels.disk_critical
tokens declared above.

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:example-hostname",

 "staging"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

Made with #monitoringlove by Sensu, Inc. © 2013-2019

About Sensu

The Sensu monitoring event pipeline empowers businesses to automate their monitoring workfows and gain
deep visibility into their multi-cloud infrastructure, from Kubernetes to bare metal. Companies like Sony, Box.com,
and Activision rely on Sensu to help deliver value faster, at scale.

Navigation

Products

 Sensu Core

 Sensu Enterprise

Solutions

 For Containers

 For Cloud

 For Nagios

Pricing

https://twitter.com/hashtag/monitoringlove
https://sensu.io/products
https://sensu.io/products/core
https://sensu.io/products/enterprise
https://sensu.io/solutions
https://sensu.io/solutions/container-monitoring
https://sensu.io/solutions/cloud-monitoring
https://sensu.io/solutions/nagios-alternative
https://sensu.io/pricing

	Sensu Go - Sensu Docs
	docs.sensu.io
	Sensu Go - Sensu Docs

	Sensu Go release notes - Sensu Docs
	docs.sensu.io
	Sensu Go release notes - Sensu Docs

	Getting Started - Sensu Docs
	docs.sensu.io
	Getting Started - Sensu Docs
	Getting started with enterprise features - Sensu Docs
	Sensu frequently asked questions - Sensu Docs
	Get started with Sensu - Sensu Docs
	Glossary of Terms - Sensu Docs
	Learn Sensu Go - Sensu Docs
	Sensu Go media - Sensu Docs
	Using the Sensu Prometheus Collector - Sensu Docs
	Container and application monitoring with Sensu - Sensu Docs
	Sensu sandbox - Sensu Docs

	Installation - Sensu Docs
	docs.sensu.io
	Installation - Sensu Docs
	Authentication - Sensu Docs
	Configuration Management - Sensu Docs
	Installing Sensu - Sensu Docs
	Supported platforms - Sensu Docs
	Installing Sensu Plugins - Sensu Docs
	Hardware requirements - Sensu Docs
	Upgrading Sensu - Sensu Docs
	Verifying Sensu downloads - Sensu Docs
	Supported versions - Sensu Docs

	guides1.pdf
	docs.sensu.io
	Guides - Sensu Docs
	How to aggregate metrics with the Sensu StatsD listener - Sensu Docs
	How to run a Sensu cluster - Sensu Docs
	How to create a read-only user with RBAC - Sensu Docs
	How to augment event data using check hooks - Sensu Docs
	How to collect and extract metrics using Sensu checks - Sensu Docs
	How to populate InfluxDB metrics using handlers - Sensu Docs
	How to install plugins using assets - Sensu Docs
	How to monitor external resources with proxy entities - Sensu Docs
	How to monitor server resources with checks - Sensu Docs
	How to plan maintenance windows using silencing - Sensu Docs
	How to reduce alert fatigue with filters - Sensu Docs
	Securing Sensu - Sensu Docs
	How to send alerts to Slack with handlers - Sensu Docs
	Sensu service logging with systemd - Sensu Docs
	Troubleshooting - Sensu Docs

	Dashboard - Sensu Docs
	docs.sensu.io
	Dashboard - Sensu Docs
	Dashboard filtering - Sensu Docs
	Dashboard overview - Sensu Docs

	API - Sensu Docs
	docs.sensu.io
	API - Sensu Docs
	Assets API - Sensu Docs
	Authorization API - Sensu Docs
	Authentication providers API - Sensu Docs
	Checks API - Sensu Docs
	Cluster role bindings API - Sensu Docs
	Cluster roles API - Sensu Docs
	Cluster API - Sensu Docs
	Entities API - Sensu Docs
	Events API - Sensu Docs
	Filters API - Sensu Docs
	Handlers API - Sensu Docs
	Health API - Sensu Docs
	Hooks API - Sensu Docs
	License management API - Sensu Docs
	Mutators API - Sensu Docs
	Namespaces API - Sensu Docs
	API overview - Sensu Docs
	Role bindings API - Sensu Docs
	Roles API - Sensu Docs
	Silencing API - Sensu Docs
	Tessen API - Sensu Docs
	Users API - Sensu Docs

	sensuctl CLI - Sensu Docs
	docs.sensu.io
	sensuctl CLI - Sensu Docs
	Sensuctl quick reference - Sensu Docs
	Sensuctl - Sensu Docs

	reference1.pdf
	docs.sensu.io
	Reference - Sensu Docs
	Sensu agent - Sensu Docs
	Assets - Sensu Docs
	Sensu backend - Sensu Docs
	Checks - Sensu Docs
	Entities - Sensu Docs
	Events - Sensu Docs
	Filters - Sensu Docs
	Handlers - Sensu Docs
	Hooks - Sensu Docs
	License management - Sensu Docs
	Mutators - Sensu Docs
	Role-based access control - Sensu Docs
	Sensu query expressions - Sensu Docs
	Silencing - Sensu Docs
	Tessen - Sensu Docs
	Tokens - Sensu Docs

