
SONiC Configuration and
Testing

July 11th, 2017

Maggie Sun

Topics

• SONiC Basic Management
• Public Repo
• Configuration and Minigraph

• Testbed Requirement, Topology and Deployment
• Basic Hardware Requirement
• Software Repo
• Testbed Topology
• Testbed Management and deployment

• Test Cases Execution

• What’s Next

SONiC Repos

• SONiC Management Repo
• https://github.com/azure/sonic-mgmt

• SONiC Build Image Repo
• https://github.com/Azure/sonic-buildimage

• SONiC Management Quick Introduction
• Ansible/Ansible-playbook:

• Use Ansible and Ansible playbook to manage test lab, testbed, test cases and test run

• Build Ansible Docker
• User can build a ‘sonic-mgmt’ docker image from sonic-buildimage repo and use it for

SONiC test execution

https://github.com/azure/sonic-mgmt
https://github.com/Azure/sonic-buildimage

Configuration and Minigraph

• Minigraph
• SONiC is using ‘Minigraph’ as the entry to configure SONiC box

• /etc/sonic/minigraph.xml

• Configuration automatically generated for SNOiC based on Minigraph
• sonic-cfggen -m /etc/sonic/minigraph.xml

• Minigraph Auto/Manual Update
• /etc/sonic/updategraph.conf

• Detailed Specification of Minigraph
• https://github.com/Azure/SONiC/wiki/Configuration-and-Minigraph

https://github.com/Azure/SONiC/wiki/Configuration-and-Minigraph

SONiC Testbed Hardware

• Basic Hardware
• Management Server: Regular Linux Server(Ubuntu) for testbed management and test run

• One network interface routable to management network
• Test Server: One High Performance Linux Server(Ubuntu) for testbed as traffic generator

• Minimum memory requirement should be 92G for one T1 testbed, we are using 192G
• At least one 40G or 100G(based on your testbed speed) interface for traffic generation
• At least 2 Management interface to can access management network to manage server and VMs

• Fanout Switch:
• At least one ‘Fanout’ Switch to connect all DUT front panel ports and Server(Minimum 34 for 32 Ports

DUT)
• To connect more DUTs to fanout switches, you could have a ‘Root’ fanout and multiple ‘Leaf’ fanout

switches
• The interface speed best match DUTs and Servers
• We are using Arista7260 64*40G

• More Detailed information:
• https://github.com/Azure/sonic-mgmt/blob/master/ansible/README.testbed.md

https://github.com/Azure/sonic-mgmt/blob/master/ansible/README.testbed.md

SONiC Testbed Software

• Basic Software
• Management Server: Regular Linux Server(Ubuntu) for testbed management and test run

• We are using Ubuntu 16.04, have basic Python2.7 and Dev packages installed
• Recommend to have Docker engine installed in this server and build sonic-mgmt-build from sonic-

buildimage to have a SONiC management docker with all the correct dependencies built for running all
SONiC management through this docker

• Install Ansible (2.0.0.2) and run ansible playbook directly for OS also works but not is recommended(Not
officially support, you are on your own)

• Test Server: One High Performance Linux Server(Ubuntu) for testbed as traffic generator
• We are using Ubuntu 16.04
• Correct drivers for 40G or 100G networks
• KVM engine to run VMs
• VMs: we are using Arista vEOS

• Fanout Switch:
• Any Switches support Lay2 Vlan

Testbed – Physical and Logical

• Testbed Physical Topology
Physical topology defines/describes how DUT/Server/Switches physical ports cable connections
in lab testbed.

• Testbed Logical Topology
Logical topology defines how DUT ports connect to VMs in testbed to conduct test

DUT

VM VM VM VM T1 (Leafs)

PTF (28 ports) Servers

Testbed servers fanout
switch

DUT

Simplified Testbed Physical Topology

• Very Basic Testbed Physical Topology

Testbed servers fanout
switch

DUT • Every DUT port is connected to fanout switch
• Fanout switch connects to testbed servers
• Connections from root fanout switches are 802.1Q trunks
• Any testbed server can access any DUT port by sending a

packet with the port vlan tag (fanout switch should have this
vlan number enabled on the server trunk)

Simplified Physical Testbed Fanout Graph File

• Fanout Graph File:
• ansible/files/lab_connection_graph.xml

• https://github.com/Azure/sonic-mgmt/blob/master/ansible/files/lab_connection_graph.xml

This is the lab graph file for library/conn_graph_facts.py to parse and get all lab
fanout switch connections information.

Manually edit this file to Make Fanout Root and Fanout Leaf both point to the
only fanout switch.

https://github.com/Azure/sonic-mgmt/blob/master/ansible/files/lab_connection_graph.xml

Testbed Physical Topology

• Every DUT port is connected to one of
leaf fanout switches

• Every leaf fanout switch has unique vlan
tag for every DUT port

• Root fanout switch connects leaf fanout
switches and testbed servers

• Connections from root fanout switches
are 802.1Q trunks

• Any testbed server can access any DUT
port by sending a packet with the port
vlan tag (root fanout switch should have
this vlan number enabled on the server
trunk)

Testbed servers

Root fanout
switch

Leaf fanout switches DUTs

Physical Testbed Fanout Graph Files

• Fanout Graph File:
• ansible/files/lab_connection_graph.xml

This is the lab graph file for library/conn_graph_facts.py to parse and get all lab fanout switch
connections information. Based on ansible_facts from the graph file, you may write Ansible
playbooks to deploy fanout switches or run test which requires to know the DUT physical
connections to fanout switch

• Supporting files help to generate fanout graph file
• ansible/files/sonic_lab_devices.csv

Manually created file helps you create lab_connection_graph.xml, list all devices that are
physically connected to fanout testbed

• ansible/files/sonic_lab_links.csv
Manully created file helps you to create lab_connection_graph.xml, list all physical links
between DUT, Fanoutleaf and Fanout root switches, servers and vlan configurations for each link

• ansible/files/creategraph.py
Python executable helps you generate a lab_connection_graph.xml based on the device file and
link file specified above.

Testbed Logical Topology Type

• T0

• T1

• T1-lag

• Ptf32

• Ptf64

Logical Topology T0

DUT

VM VM VM VM T1 (Leafs)

PTF (28 ports) Servers

• 4 VMs
• 4 DUT ports are connected to VMs
• PTF container has 4 injected ports and 28 directly connected ports

Logical Topology: T1

DUT

VM VM VM VM VM VM VM VM VM VM VM VM VM VM VM VM

VM VM VM VM VM VM VM VM VM VM VM VM VM VM VM VM

T2 (Spines)

T0 (TORs)

• 32 VMs
• All DUT ports are connected to VMs
• PTF container has injected ports only

Logical topology: T1-lag

DUT

VM VM VM VM VM VM VM VM

VM VM VM VM VM VM VM VM VM VM VM VM VM VM VM VM

T2 (Spines)

T0 (TORs)

• 24 VMs
• All DUT ports are connected to VMs
• PTF container has injected ports only

Logical topology: ptf32

DUT

PTF (32 ports) Servers

• 0 VMs
• All DUT ports are directly connected to PTF container
• PTF container has no injected ports

Logical Topology: ptf64

DUT

PTF (64 ports) Servers

• 0 VMs
• All DUT ports are directly connected to PTF container
• PTF container has no injected ports

Logical Testbed Configuration and Deployment

• Quick Summary

• Configuration of all testbeds defined in one file: testbed.csv

• One script to operate all testbeds: testbed-cli.sh

• Flexible topologies which allows to use vm_set and ptf container as one entity

• All VM management ip information in one place: veos inventory file

• ptf container is generalized and used in every topology

Logical Testbed Configuration

• One entry in testbed.csv

• Consist of:
• physical topology: How ports of VMs and ptf connected to DUT
• configuration templates for VMs

• Defined in vars/topo_*.yml files

• Current topologies are:
• t1: 32 VMs + ptf container for injected ports
• t1-lag: 24 VMs + ptf container for injected ports. 8 VMs has two ports each in LAG
• ptf32: classic ptf container with 32 ports connected directly to DUT ports
• ptf64: as ptf32, but with 64 ports
• t0: 4 VMs + ptf. ptf container has 4 injected ports + 28 directly connected ports

Sample of testbed.csv
uniq-name testbed-name topo ptf_imagename ptf_mgmt_ip server vm_base DUT Comment

ptf1-1 ptf1-1 ptf32 docker-ptf 10.0.0.188/24 server_1 str-sw1-8 Jenkins

ptf1-3 ptf1-3 ptf32 docker-ptf 10.0.0.254/24 server_1 VM100 str-sw1-2 User-A

ptf1-4 ptf1-4 ptf32 docker-ptf 10.0.0.185/24 server_1 VM200 str-sw2-4 User-B

• uniq-name - to address row in
table

• testbed-name – used in interface
names, up to 8 characters

• topo – name of topology
• ptf_imagename – defines ptf

image
• ptf_mgmt_ip – ip address for

mgmt interface of ptf container
• server – server where the

testbed resides
• vm_base – first VM for the

testbed. If empty, no VMs are
used

• DUT – target dut name
• Comment – any text here

Deployment: testbed-cli.sh

• Maintenance purposes only
• ./testbed-cli.sh start-vms {server_name} ~./password

• after a server restarted

• ./testbed-cli.sh stop-vms {server_name} ~./password
• before a server restarted

• ./testbed-cli.sh add-topo {topo_name} ~./password
• create topo with name {topo_name} from testbed.csv

• ./testbed-cli.sh remove-topo {topo_name} ~./password
• destroy topo with name {topo_name} from testbed.csv

• ./testbed-cli.sh renumber-topo {topo_name} ~./password
• renumber topo with name {topo_name} from testbed.csv

Test cases Execution

• All test cases are in sonic-mgmt repo
• https://github.com/Azure/sonic-mgmt/blob/master/ansible/roles/test/tasks/sonic.yml

• A testbed needed to be set up before hand. See Testbed for more information. Depending on the
test, either a PTF testbed or a VM set testbed might be required.

• SONiC DUT Configuration Minigraph needs to match the testbed specified above.

• To run a test:
ansible-playbook test_sonic.yml -i lab --limit {DUT_NAME} --tags {Test Name} --extra-vars "run_dir=/tmp testbed_type={TESTBED_TYPE}
ptf_host={PTF_HOST}"

https://github.com/Azure/sonic-mgmt/blob/master/ansible/roles/test/tasks/sonic.yml
https://github.com/Azure/sonic-mgmt/blob/master/ansible/README.testbed.md

Test Run Example
• Test case: https://github.com/Azure/sonic-mgmt/blob/master/ansible/roles/test/tasks/fib.yml

• Test case design: https://github.com/Azure/SONiC/wiki/FIB-Scale-Test-Plan

• Test run: ansible-playbook test_sonic.yml -i lab --limit str-msn2700-01 --vault-password-file password.txt --
tags fib --extra-vars 'testbed_type=t1 ptf_host=10.250.0.26 ipv6=False'

https://github.com/Azure/sonic-mgmt/blob/master/ansible/roles/test/tasks/fib.yml
https://github.com/Azure/SONiC/wiki/FIB-Scale-Test-Plan

Next

• Add playbook to create configuration minigraph file for each topology

• Tests to be added with new feature

Q & A

• Q & A

• Quick Resource Reference:
• Wiki: https://github.com/Azure/sonic/wiki

• Sonic-buildimage: https://github.com/Azure/sonic-buildimage/blob/master/README.md

• Sonic-Configuration: https://github.com/Azure/SONiC/wiki/Configuration-and-Minigraph

• Sonic-testing: https://github.com/Azure/SONiC/wiki/Testing-Guide

https://github.com/Azure/sonic/wiki
https://github.com/Azure/sonic-buildimage/blob/master/README.md
https://github.com/Azure/SONiC/wiki/Configuration-and-Minigraph
https://github.com/Azure/SONiC/wiki/Testing-Guide

Direct interface vs injected interface

PTF DUT VM DUT

PTF

• Injected interface:
• capture traffic from DUT to VM
• Inject traffic to DUT

• Injected interface:
• VM <–> DUT – BGP traffic
• PTF <–> DUT – test traffic

testbed.csv Consistency rules
uniq-name testbed-name topo ptf_imagename ptf_mgmt._ip server vm_base dut Commen

vms1-1-t1 vms1-1 t1 docker-ptf-sai-brcm 10.0.0.178/24 server_1 VM0100 str-sw1-11

vms1-1-t1-lag vms1-1 t1-lag docker-ptf-sai-mlnx 10.0.0.178/24 server_1 VM0100 str-sw2-4

Must be strictly checked in code reviews
• uniq-name must be unique
• All testbed records with the same testbed-name must have the same:

• ptf_ip
• server
• vm_base

• testbed-name must be up to 8 characters long
• topo name must be valid (topo registered in veos and topo file presented in vars/topo_*.yml
• ptf_imagename must be valid
• server name must be valid and presented in veos inventory file
• vm_base must not overlap with testbeds from different groups (different test-name)

TODO: check this constraints in testbed-cli.sh

