Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 1.31 KB

RECUR.md

File metadata and controls

5 lines (3 loc) · 1.31 KB

Reverse Curriculum Generation for Reinforcement Learning

Carlos Florensa, David Held, Markus Wulfmeier, Pieter Abbeel

Many relevant tasks require an agent to reach a certain state, or to manipulate objects into a desired configuration. For example, we might want a robot to align and assemble a gear onto an axle or insert and turn a key in a lock. These tasks present considerable difficulties for reinforcement learning approaches, since the natural reward function for such goal-oriented tasks is sparse and prohibitive amounts of exploration are required to reach the goal and receive a learning signal. Past approaches tackle these problems by manually designing a task-specific reward shaping function to help guide the learning. Instead, we propose a method to learn these tasks without requiring any prior task knowledge other than obtaining a single state in which the task is achieved. The robot is trained in "reverse", gradually learning to reach the goal from a set of starting positions increasingly far from the goal. Our method automatically generates a curriculum of starting positions that adapts to the agent's performance, leading to efficient training on such tasks. We demonstrate our approach on difficult simulated fine-grained manipulation problems, not solvable by state-of-the-art reinforcement learning methods.