WARP SYNC

€poch
el —

~—

[l (=M~ O = -—+g
R A A R & BRA

@ The last block that a given authority set finalized. This
— block should contain a digest signaling an authority set
change from which we can fetch the next authority set

Warp Sync Proof

The warp sync proof is a message sent to the peer that contains
accumulated proof of multiple authority set changes

\l

iy (ﬂ 14)

The vector of Warp
Sync Fragments

7(_”) (@, jf,/ﬂmdc(‘a))

Justification for the header which proves it
finality. In order to validate it the verifier
must be aware of the authorities and set id
for which the justification refers to.

Indicate whether the
warp sync has been
completed

Given the Warp Sync implementation part I, after the warp sync is
completed a full state request is sent to a peer asking for the most up to
date state, once valid gives to the node the most up to date state to
operate.

Proposed changes to our current sync

The current worker poll is bounded to the /sync protocol. The worker pool execute the

request depending on the strategy, and the strategy should be responsible to set the P2P
protocol ID

We should rely on strategies, the strategies like Warp Sync or Full Sync does not have any
knowledge about networking but has as dependency the current sync state and the grandpa state

The syncer starts a long term process, that runs forever until the end of the application and

starts by calling the strategy.NextAction() which should return a set of tasks that should be
sent to the workers

The workers executes the tasks and send the responses back to be handled by a strategy,
that is actually implemented but only targeting the full sync approach

Sor %
Tasks = STAATesy. Next Actions (O

Mo LN . Aemd (TasKA)

IF(sTwaTesy . Fipished) §

SThaTeqy = Symc Seavice. peFault S‘W_AT%S)

§

Basically the presented approach pushes the responsibility to validate /
import the responses to the strategies.

+ 4+ + + + + + ¥ *+ + + + + + *+ ¥+ + =+

+ 4+ + + + + + + + +

+ 4+ 4+ + +

who) ;

who) ;

/// Handle a response from the remote to a warp proof request that we made.
11/
/// Returns next request.
pub fn on_warp_sync_data(
&mut self,
who: &Peerld,
response: warp::EncodedProof,
) => Result<OnWarpSyncData, BadPeer> {
let import_result = if let Some(sync) = &mut self.warp_sync {
debug! (
target: "sync",
“"Importing warp proof data from {}, {} bytes.",
who,
response. . len(),
);
sync.import_warp_proof(response)
} else {
debug!(target: "sync", "Ignored obsolete warp sync response from {}",

return Err(BadPeer(who.clone(), rep::NOT_REQUESTED))

match import_result {
warp: :WarpProofImportResult::StateRequest(request) =>
Ok (OnWarpSyncData::StateRequest(who.clone(), request)),
warp: :WarpProofImportResult: :WarpProofRequest(request) =>
Ok (OnWarpSyncData: :WarpProofRequest(who.clone(), request)),
warp: :WarpProofImportResult: :BadResponse => {
debug! (target: "sync", "Bad proof data received from {}",

Err(BadPeer(who.clone(), rep::BAD_BLOCK))
Y

Warp Sync Strategy
Neyt Actior ()~
Guiven the Best plock BUILD the Woee pro Reawest

Sewvpel, Receivep = eRuesT Responge chauwel

The Awvden WMJYQHV\M o, The nanren
JS NP STV

1o Finalized):
LXFK&N\ on Reokwin:
IMPoLT &TATE O

STaTe RtsPonse =D UPpATe PABE cPochs ()
ReTuen Twe

WARP ResPonNSe =P
JUn R

IF Cwanp an %um&%m\)
The next action should fo D.Lw't
The mMost UP To BATe STaTe

Retopn False.

