pyEPR Working Group Meeting #1

Welcome to pyEPR 🔊! (see arXiv:2010.00620)

Open Source 💙 🗀 awesome star 68 fork 70 Install with conda pypi package 0.8

Automated Python module for the design and quantization of Josephson quantum circuits

!! !! pyEPR Working group meeting -- Planning for the future of pyEPR

arXiv.org > guant-ph > arXiv:2010.00620	Search		All fields
		Help Advanced Search	
Quantum Physics		D	ownlc
[Submitted on 1 Oct 2020] Energy-participation quantization of Josephson circuits		• PDF	
		• ((licer	Other fo
Zlatko K. Minev, Zaki Leghtas, Shantanu O. Mundhada, Lysander Christakis, Ioan M. Pop, Michel H. Devoret		Current brow: quant-ph < prev	
Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are one of the leading platforms for emerging quantum technologies. Increasing		new Cha	recent nge to bro

cond-mat

circuit complexity further requires efficient methods for the calculation and optimization of the

https://github.com/zlatko-minev/pyEPR

Led by Zlatko Minev 2020-10-23

Tentative agenda:

- •What is pyEPR & why?
- •Current state & some next desires
- •Roadmap & how to get involved
- •*Unitary Fund*: Short presentation & funding opportunities and potential grants to support open source work with pyEPR
- •News & community announcements

Quantum in lab

Superconducting qubits

A unified framework to handle all these questions.

The solution reduces to asking:

Where is the energy?

What fraction of the energy of the mode is stored in the non-linear/dissipative element?

 $0 \le p, p^l \le 1$

Zlatko Minev — pyEPR WG1 2020-10 (6)

Overview of energy approach

Minev et al., arXiv:2010.00620 (2020)

Zlatko Minev — pyEPR WG1 2020-10 (7)

Non-linear element: Josephson tunnel junction

* Minev et al., arXiv:2010.00620 (2020)

Zlat SFM imager R w Er y Dzi Po (8)

Transmon qubit coupled to cavity

\mathcal{H}_{lin} eigen modes

* Minev et al., arXiv:2010.00620 (2020) Impedances: Nigg et al., PRL (2012); Bourassa et al. (2012); Solgun et al. (2014, 2015, 201

Energy participation of the junction

Decomposition of a general circuit

Decomposition of a general circuit

Minev et al., arXiv:2010.00620 (2020)

Zlatko Minev — pyEPR WG1 2020-10 (13)

Decomposition of a general circuit

for *j*>1, root requires sign bit $s_{mj} = \pm 1$

Minev et al., arXiv:2010.00620 (2020)

Drawing: Zurek, Physics Today (1991) Zlatko Minev – pyEPR WG1 2020-10 (14)

Theory vs. experiment: agreement over 5 orders of magnitude

R: Minev *et al.* (2018) WG: Minev *et al.* (2013, 2016) DT3, DTW: Minev *et al.* (2020)

Zlatko Minev — pyEPR WG1 2020-10 (15)

What do people want to see?

- Existing issues
- Docs
- Unit Tests
- Integration with theory packages and methods
- Tesnor network (Agustin)
- Closed-loop optimization (Raphael)

Short presentation & funding opportunities and potential grants to support open source work with pyEPR

Micro grants

News & community announcements

con

arXiv.org > guant-ph > arXiv:2010.00620	Search		AI	
	Help Advanced Se		earch	
Quantum Physics		D	_ \	
[Submitted on 1 Oct 2020] Energy-participation quantization of Josephson	circuits	• F • ((licer	PD Dtl Dtl	
Zlatko K. Minev, Zaki Leghtas, Shantanu O. Mundhada, Lysander Christakis, Ioan M. Pop, Michel H. Devoret		Curi qua	ren nt- pre	
Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are one of the leading platforms for emerging quantum technologies. Increasing circuit complexity further requires efficient methods for the calculation and optimization of the		new Cha con	ng ng d–r	

spectrum nonlinear interactions and dissination in multi-mode distributed quantum circuits

Home > Quantum Software Developer (Yorktown Heights, NY) - Yorktown Heights, NY

APPLY NOW

Quantum Software Developer (Yorktown Heights, NY)

- Country/Region: US
- State: NEW YORK
- City: Yorktown Heights
- Category: Software Development & Support
- Required Education: Master's Degree
- Position Type: Professional
- Employment Type: Full-Time
- Contract Type: Regular
- Company: (0147) International Business Machines Corporation
- Req ID: 337206BR

https://careers.ibm.com/ShowJob/Id/1004173/Quantum-Software-Developer-(Yorktown-Heights,-NY)

Jobs

Other?

How to be involved & stay in touch?

Validation

Ratan: How do we check output of pyEPR works

William Livingston – have example file with output of HFSS so can use to verify numerical method vs. experiment

Theory & Hamitlonian

What can we contribute on theory side?

numerical / semi-analytic diagonalization of the Hamiltonian Handling anything other than transmons (interface with Jens' code) [Agustin DiPaolo] Speed up transmons & incorporate new qubits (Agustin / Jose / Abhijit / Ratan)

Closed-loop optimization

E&M Side

Linux on HPC ()

Comsol (Abhijit) – parallel thing with comsol; examples on 2D; planar resonators; (Jose/Nick Materise has used) (Other used: CST, Sonnet)

Package (to involve people)

How do you contribute (pre-solved example files; minimum things for deo) (Nick) Adding