Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "add relu forward kernel and backward kernel" #31853

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
284 changes: 1 addition & 283 deletions paddle/fluid/operators/activation_op.cu
Original file line number Diff line number Diff line change
Expand Up @@ -10,276 +10,8 @@ See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/math/math_cuda_utils.h"
#include "paddle/fluid/platform/cuda_device_function.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using float16 = paddle::platform::float16;

template <typename T>
struct CudaVecType {
using type = T;
static constexpr int vecsize = 1;
};

template <>
struct CudaVecType<platform::float16> {
using type = __half2;
static constexpr int vecsize = 2;
};

template <>
struct CudaVecType<float> {
using type = float4;
static constexpr int vecsize = 4;
};

template <typename T>
class BaseGPUFunctor {
public:
using ELEMENT_TYPE = T;
};

/* ========================================================================== */

/* =========================== relu forward ============================ */
template <typename T>
class ReluGPUFuctor : public BaseGPUFunctor<T> {
private:
T zero_;

public:
ReluGPUFuctor() { zero_ = static_cast<T>(0.0f); }

// for relu forward when T is double
__device__ __forceinline__ typename CudaVecType<T>::type Compute(
const typename CudaVecType<T>::type* x);

// when num % vecsize != 0 this func will be used
__device__ __forceinline__ T ComputeRemainder(const T x) {
return x > zero_ ? x : zero_;
}
};

template <>
__device__ __forceinline__ CudaVecType<double>::type
ReluGPUFuctor<double>::Compute(const CudaVecType<double>::type* x) {
// relu forward : out = max(x, 0)
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300
return __ldg(x) > zero_ ? __ldg(x) : zero_;
#else
return (*x) > zero_ ? (*x) : zero_;
#endif
}

template <>
__device__ __forceinline__ CudaVecType<float>::type
ReluGPUFuctor<float>::Compute(const CudaVecType<float>::type* xx) {
// relu forward : out = max(xx, 0)
return make_float4((xx->x > zero_) * (xx->x), (xx->y > zero_) * (xx->y),
(xx->z > zero_) * (xx->z), (xx->w > zero_) * (xx->w));
}

template <>
__device__ __forceinline__ CudaVecType<float16>::type
ReluGPUFuctor<float16>::Compute(const CudaVecType<float16>::type* in) {
// relu forward : out = max(in, 0)
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300
const half2 kzero = __float2half2_rn(0.0f);
return __hmul2(__hgt2(__ldg(in), kzero), __ldg(in));
#else
const float2 xx = __half22float2(*in);
return __floats2half2_rn((xx.x > 0.0f) * static_cast<float>(xx.x),
(xx.y > 0.0f) * static_cast<float>(xx.y));
#endif
}
/* ========================================================================== */

/* =========================== relu backward ============================
*/

template <typename T>
class ReluGradGPUFunctor : public BaseGPUFunctor<T> {
private:
T zero_;

public:
ReluGradGPUFunctor() { zero_ = static_cast<T>(0.0f); }

// for relu backward when T is double
__device__ __forceinline__ typename CudaVecType<T>::type Compute(
const typename CudaVecType<T>::type* out,
const typename CudaVecType<T>::type* dout);

// when num % vecsize != 0 this func will be used
__device__ __forceinline__ T ComputeRemainder(const T out, const T dout) {
// relu backward : dx = out > 0 ? dout : 0;
return out > zero_ ? dout : zero_;
}

static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; }
};

template <>
__device__ __forceinline__ CudaVecType<double>::type
ReluGradGPUFunctor<double>::Compute(const CudaVecType<double>::type* out,
const CudaVecType<double>::type* dout) {
// relu backward : dx = out > 0 ? dout : 0;
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300
return __ldg(out) > zero_ ? __ldg(dout) : zero_;
#else
return (*out) > zero_ ? (*dout) : zero_;
#endif
}

template <>
__device__ __forceinline__ CudaVecType<float>::type
ReluGradGPUFunctor<float>::Compute(const CudaVecType<float>::type* out,
const CudaVecType<float>::type* dout) {
// relu backward : dx = out > 0 ? dout : 0;
return make_float4((out->x > zero_) * (dout->x), (out->y > zero_) * (dout->y),
(out->z > zero_) * (dout->z),
(out->w > zero_) * (dout->w));
}

template <>
__device__ __forceinline__ CudaVecType<float16>::type
ReluGradGPUFunctor<float16>::Compute(const CudaVecType<float16>::type* out,
const CudaVecType<float16>::type* dout) {
// relu backward : dx = out > 0 ? dout : 0;
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300
const half2 kzero = __float2half2_rn(0.0f);
return __hmul2(__hgt2(__ldg(out), kzero), __ldg(dout));
#else
const float2 xx = __half22float2(*out);
const float2 yy = __half22float2(*dout);
return __floats2half2_rn((xx.x > 0.0f) * static_cast<float>(yy.x),
(xx.y > 0.0f) * static_cast<float>(yy.y));
#endif
}

/* ========================================================================== */

template <typename T, typename Functor>
__global__ void ActivationGradKernelVec(const T* forward_data, const T* dout,
T* dx, int num, Functor functor) {
using VecType = typename CudaVecType<T>::type;
constexpr int vecsize = CudaVecType<T>::vecsize;
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
int loop = num / vecsize;
int tail = num % vecsize;
const VecType* in_forward = reinterpret_cast<const VecType*>(forward_data);
const VecType* in_dout = reinterpret_cast<const VecType*>(dout);
VecType* out = reinterpret_cast<VecType*>(dx);

for (int i = idx; i < loop; i += stride) {
out[i] = functor.Compute((in_forward + i), (in_dout + i));
}

while (idx == loop && tail) {
dx[num - tail] =
functor.ComputeRemainder(forward_data[num - tail], dout[num - tail]);
--tail;
}
}

template <typename T, typename Functor>
__global__ void ActivationkernelVec(const T* src, T* dst, int num,
Functor functor) {
constexpr int vecsize = CudaVecType<T>::vecsize;
using VecType = typename CudaVecType<T>::type;
int idx = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
int loop = num / vecsize;
int tail = num % vecsize;
const VecType* in = reinterpret_cast<const VecType*>(src);
VecType* out = reinterpret_cast<VecType*>(dst);

for (int i = idx; i < loop; i += stride) {
out[i] = functor.Compute((in + i));
}

while (idx == loop && tail) {
dst[num - tail] = functor.ComputeRemainder(src[num - tail]);
--tail;
}
}

template <typename DeviceContext, typename Functor>
class ActivationGPUKernel
: public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
public:
using T = typename Functor::ELEMENT_TYPE;
void Compute(const framework::ExecutionContext& context) const override {
const framework::Tensor* in_x = nullptr;
framework::Tensor* out = nullptr;
ExtractActivationTensor(context, &in_x, &out);
auto& dev_ctx = context.template device_context<DeviceContext>();

int num = in_x->numel();
const T* input_data = in_x->data<T>();
T* output_data = out->mutable_data<T>(dev_ctx.GetPlace(),
static_cast<size_t>(num * sizeof(T)));

int block = 512;
#ifdef __HIPCC__
block = 256;
#endif
Functor functor;
constexpr int vecsize = CudaVecType<T>::vecsize;
int grid = max((num / vecsize + block - 1) / block, 1);
ActivationkernelVec<T, Functor><<<grid, block>>>(input_data, output_data,
num, functor);
}
};

template <typename DeviceContext, typename Functor>
class ActivationGradGPUKernel
: public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
public:
using T = typename Functor::ELEMENT_TYPE;
void Compute(const framework::ExecutionContext& context) const override {
const framework::Tensor *x, *out, *d_out;
framework::Tensor* d_x = nullptr;
x = out = d_out = nullptr;
ExtractActivationGradTensor<Functor::FwdDeps()>(context, &x, &out, &d_out,
&d_x);
int numel = d_out->numel();
auto& dev_ctx = context.template device_context<DeviceContext>();
auto* dx_data = d_x->mutable_data<T>(
dev_ctx.GetPlace(), static_cast<size_t>(numel * sizeof(T)));
auto* dout_data = d_out->data<T>();

auto* forward_data = dout_data;
if (static_cast<int>(Functor::FwdDeps()) == static_cast<int>(kDepOut)) {
// Only need forward output Out
forward_data = out->data<T>();
} else if (static_cast<int>(Functor::FwdDeps()) ==
static_cast<int>(kDepX)) {
// Only need forward input X
forward_data = x->data<T>();
}

int block = 512;
#ifdef __HIPCC__
block = 256;
#endif
Functor functor;
constexpr int vecsize = CudaVecType<T>::vecsize;
int grid = max((numel / vecsize + block - 1) / block, 1);
ActivationGradKernelVec<T, Functor><<<grid, block>>>(
forward_data, dout_data, dx_data, numel, functor);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

Expand Down Expand Up @@ -328,21 +60,7 @@ REGISTER_OP_CUDA_KERNEL(
/* ========================================================================== */

/* =========================== relu register ============================ */
REGISTER_OP_CUDA_KERNEL(
relu, ops::ActivationGPUKernel<paddle::platform::CUDADeviceContext,
ops::ReluGPUFuctor<float>>,
ops::ActivationGPUKernel<paddle::platform::CUDADeviceContext,
ops::ReluGPUFuctor<double>>,
ops::ActivationGPUKernel<plat::CUDADeviceContext,
ops::ReluGPUFuctor<plat::float16>>);

REGISTER_OP_CUDA_KERNEL(
relu_grad, ops::ActivationGradGPUKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradGPUFunctor<float>>,
ops::ActivationGradGPUKernel<paddle::platform::CUDADeviceContext,
ops::ReluGradGPUFunctor<double>>,
ops::ActivationGradGPUKernel<plat::CUDADeviceContext,
ops::ReluGradGPUFunctor<plat::float16>>);
REGISTER_ACTIVATION_CUDA_KERNEL(relu, Relu, ReluCUDAFunctor, ReluGradFunctor);

REGISTER_OP_CUDA_KERNEL(
relu_grad_grad,
Expand Down