Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add python API for Warp-CTC op #7438

Merged
merged 4 commits into from
Jan 18, 2018
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
99 changes: 65 additions & 34 deletions python/paddle/v2/fluid/layers/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,34 +22,12 @@
from tensor import concat

__all__ = [
'fc',
'embedding',
'dynamic_lstm',
'gru_unit',
'linear_chain_crf',
'crf_decoding',
'cos_sim',
'cross_entropy',
'square_error_cost',
'accuracy',
'chunk_eval',
'sequence_conv',
'conv2d',
'sequence_pool',
'pool2d',
'batch_norm',
'beam_search_decode',
'conv2d_transpose',
'sequence_expand',
'lstm_unit',
'reduce_sum',
'reduce_mean',
'reduce_max',
'reduce_min',
'sequence_first_step',
'sequence_last_step',
'dropout',
'split',
'fc', 'embedding', 'dynamic_lstm', 'gru_unit', 'linear_chain_crf',
'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy',
'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d',
'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand',
'lstm_unit', 'reduce_sum', 'reduce_mean', 'reduce_max', 'reduce_min',
'sequence_first_step', 'sequence_last_step', 'dropout', 'split', 'warpctc'
]


Expand Down Expand Up @@ -1547,13 +1525,13 @@ def split(input, num_or_sections, dim=-1):

Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-tensors
that the tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors'
num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
then the integer indicates the number of equal sized sub-tensors
that the tensor will be divided into. If :attr:`num_or_sections`
is a list of integers, the length of list indicates the number of
sub-tensors and the integers indicate the sizes of sub-tensors'
:attr:`dim` dimension orderly.
dim (int): The dimension along which to split. If :math:`dim < 0`, the
dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`.

Returns:
Expand Down Expand Up @@ -1597,3 +1575,56 @@ def split(input, num_or_sections, dim=-1):
'axis': dim
})
return outs


def warpctc(input, label, blank=0, norm_by_times=False, **kwargs):
"""
An operator integrating the open source Warp-CTC library
(https://github.com/baidu-research/warp-ctc)
to compute Connectionist Temporal Classification (CTC) loss.
It can be aliased as softmax with CTC, since a native softmax activation is
interated to the Warp-CTC library, to to normlize values for each row of the
input tensor.

Args:
input(Variable): (LodTensor, default: LoDTensor<float>),
the unscaled probabilities of variable-length sequences,
which is a 2-D Tensor with LoD information.
It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
sequences' length and num_classes is the true number of classes.
(not including the blank label).
label(Variable): (LodTensor, default: LoDTensor<int>), the ground truth
of variable-length sequence, which is a 2-D Tensor with LoD
information. It is of the shape [Lg, 1], where Lg is th sum of
all labels' length.
blank: (int, default: 0), the blank label index of Connectionist
Temporal Classification (CTC) loss, which is in the
half-opened interval [0, num_classes + 1).
norm_by_times: (bool, default: false), whether to normalize
the gradients by the number of time-step,which is also the
sequence's length. There is no need to normalize the gradients
if warpctc layer was follewed by a mean_op.

Returns:
Variable: The Connectionist Temporal Classification (CTC) loss,
which is a 2-D Tensor of the shape [batch_size, 1].

Examples:
.. code-block:: python
y = layers.data(name='y', shape=[11, 8], dtype='float32', lod_level=1)
y_predict = layers.data(name='y_predict', shape=[11, 1], dtype='float32')
cost = layers.warpctc(input=y_predict, label=y)

"""
helper = LayerHelper('warpctc', **kwargs)
loss_out = helper.create_tmp_variable(dtype=input.dtype)
grad_out = helper.create_tmp_variable(dtype=input.dtype)
helper.append_op(
type='warpctc',
inputs={'Logits': [input],
'Label': [label]},
outputs={'WarpCTCGrad': [grad_out],
'Loss': [loss_out]},
attrs={'blank': blank,
'norm_by_times': norm_by_times})
return loss_out