Skip to content

Commit

Permalink
is the correlator =0 for i!=j ???
Browse files Browse the repository at this point in the history
  • Loading branch information
simone-romiti committed Jul 4, 2023
1 parent 1a646b5 commit 259019c
Showing 1 changed file with 148 additions and 22 deletions.
170 changes: 148 additions & 22 deletions doc/omeas_heavy_mesons.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,7 @@ where ${\sigma_3 =
Moreover $\sigma_3 = \sigma_3^\dagger$,
hence $P_i^\dagger = P_i$.

- Obviously, $P_i$ commutes with the $\gamma$ matrices asthey act on different spaces.
- Obviously, $P_i$ commutes with the $\gamma$ matrices as they act on different spaces.

## Wick contractions

Expand All @@ -169,8 +169,8 @@ we can write:
\\
&=
- \braket{
[\bar{\chi}_{\ell} (\tau_1 P_i) \Gamma_1 \chi_{h}](x)
[\bar{\chi}_{h} (P_j \tau_1) \Gamma_2 \chi_{\ell}](0)
[\bar{\chi}_{\ell} (\sigma_1 P_i) \Gamma_1 \chi_{h}](x)
[\bar{\chi}_{h} (P_j \sigma_1) \Gamma_2 \chi_{\ell}](0)
}
\, .
\end{split}
Expand All @@ -181,42 +181,71 @@ An implicit summation on flavor indices is understood:
\begin{equation}
\mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x}) =
- \braket{
[(\bar{\chi}_{\ell})_{f_1} (\tau_1 P_i)_{f_1 f_2} \Gamma_1 (\chi_{h})_{f_2}](x)
[(\bar{\chi}_{h})_{f_3} (P_j \tau_1)_{f_3 f_4} \Gamma_2 (\chi_{\ell})_{f_4}](0)
[(\bar{\chi}_{\ell})_{f_1} (\sigma_1 P_i)_{f_1 f_2} \Gamma_1 (\chi_{h})_{f_2}](x)
[(\bar{\chi}_{h})_{f_3} (P_j \sigma_1)_{f_3 f_4} \Gamma_2 (\chi_{\ell})_{f_4}](0)
}
\, .
\end{equation}
<!-- -->

If we now call $S = D^{-1}$ the inverse of the Dirac operator,
We now call $S = D^{-1}$ the inverse of the Dirac operator
and use Wick's theorem:
<!-- -->
\begin{equation}
\braket{\Psi_{a}(x) \bar{\Psi}_{b}(0)} = S_{ab}(x|0) \, ,
\end{equation}
<!-- -->
where $a$ and $b$ are a shortcut for the other indices of the spinor (spin, flavor, color, etc.),
we write:
where $a$ and $b$ are a shortcut for the other indices of the spinor (spin, flavor, color, etc.).
The correlator is:
<!-- -->
\begin{equation}
\mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x}) =
\begin{split}
\mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x})
&=
(S_\ell)_{\substack{f_4 f_1 \\ \alpha_1 \alpha_2}} (0|x)
(\tau_1 P_i)_{f_1 f_2} (\Gamma_1)_{\alpha_2 \alpha_3}
(\sigma_1 P_i)_{f_1 f_2} (\Gamma_1)_{\alpha_2 \alpha_3}
(S_h)_{\substack{f_2 f_3 \\ \alpha_3 \alpha_4}} (x|0)
(P_j \tau_1)_{f_3 f_4} (\Gamma_2)_{\alpha_4 \alpha_1}
(P_j \sigma_1)_{f_3 f_4} (\Gamma_2)_{\alpha_4 \alpha_1}
\\
&=
\operatorname{Tr}_f
\operatorname{Tr}
\left[
S_h(x|0) (P_j \sigma_1) \Gamma_2 S_\ell(0|x) (\sigma_1 P_i) \Gamma_1
\right]
\, .
\end{split}
\end{equation}
<!-- -->

Using $\gamma_5$ hermiticity,
${(S_\ell)_{f_1 f_2} = (\sigma_1)_{f_1 g_1} \gamma_5 (S_\ell)_{g_1 g_2}^\dagger \gamma_5 (\sigma_1)_{g_2 f_2}}$,
we find:
<!-- -->
\begin{equation}
\mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x})
=
\operatorname{Tr}_f
\operatorname{Tr}
\left[
S_h(x|0) P_j \Gamma_2 S_\ell (x|0) P_i \Gamma_1
\right]
\end{equation}

**Check: does this vanish for $i\neq j$ !?!?**


## Stochastic sampling

Analogously to @foley2005practical,
we now use $N_r$ stochastic samples in order to approximate $S$.
The difference here is that the dilution is not on time but on Dirac index (spin).
Therefore, our estimator for $S$ is
Therefore, our estimators for $S$ and $S^{\dagger}$ are
(cf. eqs. (5) and (7) of @foley2005practical):
<!-- -->
\begin{equation}
\label{eq:StochasticPropagator}
\begin{split}
(S_\phi)_{\substack{f_1 f_2 \\ \alpha_1 \alpha_2}}(x|y)
\approx
\sum_{\beta=1}^{N_D=4}
Expand All @@ -225,25 +254,35 @@ Therefore, our estimator for $S$ is
(\eta_\phi^{(\beta)})^*_{\substack{f_2 \\ \alpha_2}}(y)
}
\, ,
\\
(S_\phi^{\dagger})_{\substack{f_1 f_2 \\ \alpha_1 \alpha_2}}(x|y)
\approx
\sum_{\beta=1}^{N_D=4}
\braket{
(\eta_\phi^{(\beta)})_{\substack{f_1 \\ \alpha_1}}(x)
(\psi_\phi^{(\beta)})^{*}_{\substack{f_2 \\ \alpha_2}}(y)
}
\, ,
\end{split}
\end{equation}
<!-- -->
where $\braket{\cdot}$ here denotes the expectation value over the $N_r$ stochastic samples.
The sources are such that
${\eta^{(\beta)}_{\alpha} = \delta_{\alpha \beta}}$,
and $\psi^{\beta}$ are the solutions to:
and $\psi^{(\beta)}$ are the solutions to:
<!-- -->
\begin{equation}
\begin{split}
&(D_{\phi})_{\substack{f_1 f_2 \\ \alpha_1 \alpha_2}}(x|y)
\,
(\psi_\phi)^{\beta}_{\substack{f_2 \\ \alpha_2}}(y) =
(\eta_\phi)^{\beta}_{\substack{f_1 \\ \alpha_1}}(x)
(\psi_\phi^{(\beta)})_{\substack{f_2 \\ \alpha_2}}(y) =
(\eta_\phi^{(\beta)})_{\substack{f_1 \\ \alpha_1}}(x)
\\[1em]
& \implies \, \,
(\psi_\phi)^{\beta}_{\substack{f_1 \\ \alpha_1}}(x) =
(\psi_\phi^{(\beta)})_{\substack{f_1 \\ \alpha_1}}(x) =
(S_{\phi})_{\substack{f_1 f_2 \\ \alpha_1 \alpha_2}}(x|y)
\,
(\eta_\phi)^{\beta}_{\substack{f_2 \\ \alpha_1}}(y)
(\eta_\phi^{(\beta)})_{\substack{f_2 \\ \alpha_1}}(y)
\end{split}
\end{equation}
<!-- -->
Expand All @@ -259,13 +298,13 @@ Therefore, back to our correlators, we can write:
&
(\psi_{\ell}^{(\beta_1)})_{\substack{f_4 \\ \alpha_1}}(0)
(\eta_{\ell}^{(\beta_1)})^*_{\substack{f_1 \\ \alpha_2}}(x)
(\tau_1 P_i)_{f_1 f_2} (\Gamma_1)_{\alpha_2 \alpha_3}
(\sigma_1 P_i)_{f_1 f_2} (\Gamma_1)_{\alpha_2 \alpha_3}
\\
\times
&
(\psi_{h}^{(\beta_2)})_{\substack{f_2 \\ \alpha_3}}(x)
(\eta_{h}^{(\beta_2)})^*_{\substack{f_3 \\ \alpha_4}}(0)
(P_j \tau_1)_{f_3 f_4} (\Gamma_2)_{\alpha_4 \alpha_1}
(P_j \sigma_1)_{f_3 f_4} (\Gamma_2)_{\alpha_4 \alpha_1}
\, .
\end{split}
\end{equation}
Expand All @@ -280,22 +319,109 @@ In terms of dot products (flavor and Dirac indices contracted):
\sum_{\beta_1, \beta_2}
&
\left[
(\eta_\ell^{(\beta_1)}(x))^{\dagger} (\tau_1 P_i) \Gamma_1 \psi_h^{(\beta_2)}(x)
(\eta_\ell^{(\beta_1)}(x))^{\dagger} (\sigma_1 P_i) \Gamma_1 \psi_h^{(\beta_2)}(x)
\right]
\\
\times&
\left[
(\eta_h^{(\beta_2)}(0))^{\dagger} (P_j \tau_1) \Gamma_2 \psi_\ell^{(\beta_1)}(0)
(\eta_h^{(\beta_2)}(0))^{\dagger} (P_j \sigma_1) \Gamma_2 \psi_\ell^{(\beta_1)}(0)
\right]
\end{split}
\end{equation}
<!-- -->


## Stochastic improvements

There are some tricks we can use in order to enhance the signal-to-noise ratio.

- Use the $\gamma_5$ hermiticity of the Dirac operator:

\begin{equation}
\gamma_5 (S_\ell)_{f_1 f_2} \gamma_5
= (\sigma_1)_{f_1 g_1} (S_\ell)_{g_1 g_2}^\dagger (\sigma_1)_{g_2 f_2}
\, ,
\end{equation}

<!-- and write:
\begin{equation}
\begin{split}
\mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x})
=&
(\sigma_1)_{f_4 g_1}
(\gamma_5)_{\alpha_2 \alpha_5}
(S_\ell)^{*}_{\substack{g_1 g_2 \\ \alpha_5 \alpha_6 \\ c_1 c_2}} (x|0)
(\gamma_5)_{\alpha_6 \alpha_1}
(\sigma_1)_{g_2 f_1}
(\sigma_1 P_i)_{f_1 f_2} (\Gamma_1)_{\alpha_2 \alpha_3} \\
&\times
(S_h)_{\substack{f_2 f_3 \\ \alpha_3 \alpha_4 \\ c_2 c_1}} (x|0)
(P_j \sigma_1)_{f_3 f_4} (\Gamma_2)_{\alpha_4 \alpha_1}
\, .
\end{split}
\end{equation} -->


- We also use the "one-end-trick", namely use the same source for each flavor:
<!-- -->
\begin{equation}
\eta_\phi = \eta \, ,
\end{equation}
<!-- -->


Therefore (cf. eq. \eqref{eq:StochasticPropagator}):
<!-- -->
\begin{equation}
\begin{split}
&\mathcal{C}^{h_i, h_j}_{\Gamma_1, \Gamma_2}(t, \vec{x})
=
\\[1em]
&\sum_{\beta_1 \beta_2}
(\sigma_1)_{f_1 g_1}
(\gamma_5)_{\alpha_1 \alpha_5}
(\eta^{(\beta_1)})_{\substack{g_1 \\ \alpha_5}} (0)
(\psi_\ell^{(\beta_1)})^{*}_{\substack{g_2 \\ \alpha_6}} (x)
(\gamma_5)_{\alpha_6 \alpha_2}
(\sigma_1)_{g_2 f_4}
(\sigma_1 P_i)_{f_1 f_2} (\Gamma_1)_{\alpha_2 \alpha_3} \\
&\times
(\psi_h^{(\beta_2)})_{\substack{f_2\\ \alpha_3}} (x)
(\eta^{(\beta_2)})^{*}_{\substack{f_3 \\ \alpha_4}} (0)