Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor PBR shaders #25693

Merged
merged 6 commits into from
Mar 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
271 changes: 0 additions & 271 deletions src/renderers/shaders/ShaderChunk/bsdfs.glsl.js
Original file line number Diff line number Diff line change
@@ -1,236 +1,5 @@
export default /* glsl */`

vec3 BRDF_Lambert( const in vec3 diffuseColor ) {

return RECIPROCAL_PI * diffuseColor;

} // validated

vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {

// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );

// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );

return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );

} // validated

float F_Schlick( const in float f0, const in float f90, const in float dotVH ) {

// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );

// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );

return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );

} // validated

vec3 Schlick_to_F0( const in vec3 f, const in float f90, const in float dotVH ) {
float x = clamp( 1.0 - dotVH, 0.0, 1.0 );
float x2 = x * x;
float x5 = clamp( x * x2 * x2, 0.0, 0.9999 );

return ( f - vec3( f90 ) * x5 ) / ( 1.0 - x5 );
}

// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
float V_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {

float a2 = pow2( alpha );

float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );
float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );

return 0.5 / max( gv + gl, EPSILON );

}

// Microfacet Models for Refraction through Rough Surfaces - equation (33)
// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
// alpha is "roughness squared" in Disney’s reparameterization
float D_GGX( const in float alpha, const in float dotNH ) {

float a2 = pow2( alpha );

float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1

return RECIPROCAL_PI * a2 / pow2( denom );

}

// GGX Distribution, Schlick Fresnel, GGX_SmithCorrelated Visibility
vec3 BRDF_GGX( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float roughness ) {

float alpha = pow2( roughness ); // UE4's roughness

vec3 halfDir = normalize( lightDir + viewDir );

float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );

vec3 F = F_Schlick( f0, f90, dotVH );

float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );

float D = D_GGX( alpha, dotNH );

return F * ( V * D );

}

#ifdef USE_IRIDESCENCE

vec3 BRDF_GGX_Iridescence( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, const in vec3 f0, const in float f90, const in float iridescence, const in vec3 iridescenceFresnel, const in float roughness ) {

float alpha = pow2( roughness ); // UE4's roughness

vec3 halfDir = normalize( lightDir + viewDir );

float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );
float dotVH = saturate( dot( viewDir, halfDir ) );

vec3 F = mix( F_Schlick( f0, f90, dotVH ), iridescenceFresnel, iridescence );

float V = V_GGX_SmithCorrelated( alpha, dotNL, dotNV );

float D = D_GGX( alpha, dotNH );

return F * ( V * D );

}

#endif

// Rect Area Light

// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines
// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt
// code: https://github.com/selfshadow/ltc_code/

vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {

const float LUT_SIZE = 64.0;
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const float LUT_BIAS = 0.5 / LUT_SIZE;

float dotNV = saturate( dot( N, V ) );

// texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) )
vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );

uv = uv * LUT_SCALE + LUT_BIAS;

return uv;

}

float LTC_ClippedSphereFormFactor( const in vec3 f ) {

// Real-Time Area Lighting: a Journey from Research to Production (p.102)
// An approximation of the form factor of a horizon-clipped rectangle.

float l = length( f );

return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );

}

vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {

float x = dot( v1, v2 );

float y = abs( x );

// rational polynomial approximation to theta / sin( theta ) / 2PI
float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;
float b = 3.4175940 + ( 4.1616724 + y ) * y;
float v = a / b;

float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;

return cross( v1, v2 ) * theta_sintheta;

}

vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {

// bail if point is on back side of plane of light
// assumes ccw winding order of light vertices
vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];
vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];
vec3 lightNormal = cross( v1, v2 );

if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );

// construct orthonormal basis around N
vec3 T1, T2;
T1 = normalize( V - N * dot( V, N ) );
T2 = - cross( N, T1 ); // negated from paper; possibly due to a different handedness of world coordinate system

// compute transform
mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );

// transform rect
vec3 coords[ 4 ];
coords[ 0 ] = mat * ( rectCoords[ 0 ] - P );
coords[ 1 ] = mat * ( rectCoords[ 1 ] - P );
coords[ 2 ] = mat * ( rectCoords[ 2 ] - P );
coords[ 3 ] = mat * ( rectCoords[ 3 ] - P );

// project rect onto sphere
coords[ 0 ] = normalize( coords[ 0 ] );
coords[ 1 ] = normalize( coords[ 1 ] );
coords[ 2 ] = normalize( coords[ 2 ] );
coords[ 3 ] = normalize( coords[ 3 ] );

// calculate vector form factor
vec3 vectorFormFactor = vec3( 0.0 );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );

// adjust for horizon clipping
float result = LTC_ClippedSphereFormFactor( vectorFormFactor );

/*
// alternate method of adjusting for horizon clipping (see referece)
// refactoring required
float len = length( vectorFormFactor );
float z = vectorFormFactor.z / len;

const float LUT_SIZE = 64.0;
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;
const float LUT_BIAS = 0.5 / LUT_SIZE;

// tabulated horizon-clipped sphere, apparently...
vec2 uv = vec2( z * 0.5 + 0.5, len );
uv = uv * LUT_SCALE + LUT_BIAS;

float scale = texture2D( ltc_2, uv ).w;

float result = len * scale;
*/

return vec3( result );

}

// End Rect Area Light


float G_BlinnPhong_Implicit( /* const in float dotNL, const in float dotNV */ ) {

// geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v)
Expand Down Expand Up @@ -261,44 +30,4 @@ vec3 BRDF_BlinnPhong( const in vec3 lightDir, const in vec3 viewDir, const in ve

} // validated

#if defined( USE_SHEEN )

// https://github.com/google/filament/blob/master/shaders/src/brdf.fs
float D_Charlie( float roughness, float dotNH ) {

float alpha = pow2( roughness );

// Estevez and Kulla 2017, "Production Friendly Microfacet Sheen BRDF"
float invAlpha = 1.0 / alpha;
float cos2h = dotNH * dotNH;
float sin2h = max( 1.0 - cos2h, 0.0078125 ); // 2^(-14/2), so sin2h^2 > 0 in fp16

return ( 2.0 + invAlpha ) * pow( sin2h, invAlpha * 0.5 ) / ( 2.0 * PI );

}

// https://github.com/google/filament/blob/master/shaders/src/brdf.fs
float V_Neubelt( float dotNV, float dotNL ) {

// Neubelt and Pettineo 2013, "Crafting a Next-gen Material Pipeline for The Order: 1886"
return saturate( 1.0 / ( 4.0 * ( dotNL + dotNV - dotNL * dotNV ) ) );

}

vec3 BRDF_Sheen( const in vec3 lightDir, const in vec3 viewDir, const in vec3 normal, vec3 sheenColor, const in float sheenRoughness ) {

vec3 halfDir = normalize( lightDir + viewDir );

float dotNL = saturate( dot( normal, lightDir ) );
float dotNV = saturate( dot( normal, viewDir ) );
float dotNH = saturate( dot( normal, halfDir ) );

float D = D_Charlie( sheenRoughness, dotNH );
float V = V_Neubelt( dotNV, dotNL );

return sheenColor * ( D * V );

}

#endif
`;
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,7 @@ export default /* glsl */`
vec3 clearcoatMapN = texture2D( clearcoatNormalMap, vUv ).xyz * 2.0 - 1.0;
clearcoatMapN.xy *= clearcoatNormalScale;

#ifdef USE_TANGENT

clearcoatNormal = normalize( vTBN * clearcoatMapN );

#else

clearcoatNormal = perturbNormal2Arb( - vViewPosition, clearcoatNormal, clearcoatMapN, faceDirection );

#endif
clearcoatNormal = normalize( tbn * clearcoatMapN );

#endif
`;
32 changes: 32 additions & 0 deletions src/renderers/shaders/ShaderChunk/common.glsl.js
Original file line number Diff line number Diff line change
Expand Up @@ -115,4 +115,36 @@ vec2 equirectUv( in vec3 dir ) {
return vec2( u, v );

}

vec3 BRDF_Lambert( const in vec3 diffuseColor ) {

return RECIPROCAL_PI * diffuseColor;

} // validated

vec3 F_Schlick( const in vec3 f0, const in float f90, const in float dotVH ) {

// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );

// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );

return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );

} // validated

float F_Schlick( const in float f0, const in float f90, const in float dotVH ) {

// Original approximation by Christophe Schlick '94
// float fresnel = pow( 1.0 - dotVH, 5.0 );

// Optimized variant (presented by Epic at SIGGRAPH '13)
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf
float fresnel = exp2( ( - 5.55473 * dotVH - 6.98316 ) * dotVH );

return f0 * ( 1.0 - fresnel ) + ( f90 * fresnel );

} // validated
`;
Loading