Skip to content

Commit

Permalink
[Sparse] Add a LADIES example (dmlc#6560)
Browse files Browse the repository at this point in the history
  • Loading branch information
xiangyuzhi authored and Ubuntu committed Nov 27, 2023
1 parent 44417f7 commit 79d9c8e
Showing 1 changed file with 256 additions and 0 deletions.
256 changes: 256 additions & 0 deletions examples/sparse/sampling/ladies.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,256 @@
"""
This script demonstrates how to use dgl sparse library to sample on graph and
train model. It trains and tests a LADIES model using the sparse power and
sp_broadcast_v operators to sample submatrix from the whole matrix.
This flowchart describes the main functional sequence of the provided example.
main
├───> Load and preprocess full dataset
├───> Instantiate LADIES model
├───> train
│ │
│ └───> Training loop
│ │
│ ├───> Sample submatrix
│ │
│ └───> LADIES.forward
└───> test
├───> Sample submatrix
└───> Evaluate the model
"""
import argparse

import dgl.sparse as dglsp

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchmetrics.functional as MF
from dgl.data import AsNodePredDataset
from dgl.sparse import sp_broadcast_v
from ogb.nodeproppred import DglNodePropPredDataset


class SAGEConv(nn.Module):
r"""LADIES layer from `Layer-Dependent Importance Sampling
for Training Deep and Large Graph Convolutional Networks
<https://arxiv.org/abs/1911.07323.pdf>`__"""

def __init__(
self,
in_size,
out_size,
):
super(SAGEConv, self).__init__()
self._in_src_feats, self._in_dst_feats = in_size, in_size
self._out_size = out_size

self.fc_neigh = nn.Linear(self._in_src_feats, out_size, bias=False)
self.fc_self = nn.Linear(self._in_dst_feats, out_size, bias=True)
self.reset_parameters()

def reset_parameters(self):
gain = nn.init.calculate_gain("relu")
nn.init.xavier_uniform_(self.fc_self.weight, gain=gain)
nn.init.xavier_uniform_(self.fc_neigh.weight, gain=gain)

def forward(self, A, feat):
feat_src = feat
feat_dst = feat[: A.shape[1]]

# Aggregator type: mean.
srcdata = self.fc_neigh(feat_src)
# Divided by degree.
D_hat = dglsp.diag(A.sum(0)) ** -1
A_div = A @ D_hat
# Conv neighbors.
dstdata = A_div.T @ srcdata

rst = self.fc_self(feat_dst) + dstdata
return rst


class LADIES(nn.Module):
def __init__(self, in_size, hid_size, out_size):
super().__init__()
self.layers = nn.ModuleList()
# Three-layer LADIES.
self.layers.append(SAGEConv(in_size, hid_size))
self.layers.append(SAGEConv(hid_size, hid_size))
self.layers.append(SAGEConv(hid_size, out_size))

self.dropout = nn.Dropout(0.5)
self.hid_size = hid_size
self.out_size = out_size

def forward(self, sampled_matrices, x):
hidden_x = x
for layer_idx, (layer, sampled_matrix) in enumerate(
zip(self.layers, sampled_matrices)
):
hidden_x = layer(sampled_matrix, hidden_x)
if layer_idx != len(self.layers) - 1:
hidden_x = F.relu(hidden_x)
hidden_x = self.dropout(hidden_x)
return hidden_x


def multilayer_sample(A, fanouts, seeds, ndata):
sampled_matrices = []
src = seeds

#########################################################################
# (HIGHLIGHT) Using the sparse sample operator to preform LADIES sampling
# algorithm from the neighboring nodes of the seeds nodes.
# The sparse sp_power operator is applied to compute sample probability,
# and sp_broadcast_v is then employed to normalize weight by performing
# division operations on column.
#########################################################################

for fanout in fanouts:
# Sample neighbors.
sub_A = A.index_select(1, src)
# Compute probability weight.
row_probs = (sub_A**2).sum(1)
row_probs = row_probs / row_probs.sum(0)
# Layer-wise sample nodes.
row_ids = torch.multinomial(row_probs, fanout, replacement=False)
# Add self-loop.
row_ids = torch.cat((row_ids, src), 0).unique()
sampled_matrix = sub_A.index_select(0, row_ids)
# Normalize edge weights.
div_matirx = sp_broadcast_v(
sampled_matrix, row_probs[row_ids].reshape(-1, 1), "truediv"
)
div_matirx = sp_broadcast_v(div_matirx, div_matirx.sum(0), "truediv")

# Save the sampled matrix.
sampled_matrices.insert(0, div_matirx)
src = row_ids

x = ndata["feat"][src]
y = ndata["label"][seeds]
return sampled_matrices, x, y


def evaluate(model, A, dataloader, ndata, num_classes):
model.eval()
ys = []
y_hats = []
fanouts = [4000, 4000, 4000]
for seeds in dataloader:
with torch.no_grad():
sampled_matrices, x, y = multilayer_sample(A, fanouts, seeds, ndata)
ys.append(y)
y_hats.append(model(sampled_matrices, x))

return MF.accuracy(
torch.cat(y_hats),
torch.cat(ys),
task="multiclass",
num_classes=num_classes,
)


def validate(device, A, ndata, dataset, model, batch_size):
inf_id = dataset.test_idx.to(device)
inf_dataloader = torch.utils.data.DataLoader(inf_id, batch_size=batch_size)
acc = evaluate(model, A, inf_dataloader, ndata, dataset.num_classes)
return acc


def train(device, A, ndata, dataset, model):
# Create sampler & dataloader.
train_idx = dataset.train_idx.to(device)
val_idx = dataset.val_idx.to(device)

train_dataloader = torch.utils.data.DataLoader(
train_idx, batch_size=1024, shuffle=True
)
val_dataloader = torch.utils.data.DataLoader(val_idx, batch_size=1024)

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=5e-4)

fanouts = [4000, 4000, 4000]
for epoch in range(20):
model.train()
total_loss = 0
for it, seeds in enumerate(train_dataloader):
sampled_matrices, x, y = multilayer_sample(A, fanouts, seeds, ndata)
y_hat = model(sampled_matrices, x)
loss = F.cross_entropy(y_hat, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()

acc = evaluate(model, A, val_dataloader, ndata, dataset.num_classes)
print(
"Epoch {:05d} | Loss {:.4f} | Accuracy {:.4f} ".format(
epoch, total_loss / (it + 1), acc.item()
)
)


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LADIESConv")
parser.add_argument(
"--mode",
default="gpu",
choices=["cpu", "gpu"],
help="Training mode. 'cpu' for CPU training, 'gpu' for GPU training.",
)
args = parser.parse_args()
if not torch.cuda.is_available():
args.mode = "cpu"
print(f"Training in {args.mode} mode.")

#####################################################################
# (HIGHLIGHT) This example implements a LADIES algorithm by sparse
# operators, which involves sampling a subgraph from a full graph and
# conducting training.
#
# First, the whole graph is loaded onto the CPU or GPU and transformed
# to sparse matrix. To obtain the training subgraph, it samples three
# submatrices by seed nodes, which contains their layer-wise sampled
# 1-hop, 2-hop, and 3-hop neighbors. Then, the features of the
# subgraph are input to the network for training.
#####################################################################

# Load and preprocess dataset.
print("Loading data")
device = torch.device("cpu" if args.mode == "cpu" else "cuda")
dataset = AsNodePredDataset(DglNodePropPredDataset("ogbn-products"))
g = dataset[0]

# Create LADIES model.
in_size = g.ndata["feat"].shape[1]
out_size = dataset.num_classes
model = LADIES(in_size, 256, out_size).to(device)

# Create sparse.
indices = torch.stack(g.edges())
N = g.num_nodes()
A = dglsp.spmatrix(indices, shape=(N, N)).coalesce()
I = dglsp.identity(A.shape)

# Initialize laplacian matrix.
A_hat = A + I
D_hat = dglsp.diag(A_hat.sum(1)) ** -0.5
A_norm = D_hat @ A_hat @ D_hat
A_norm = A_norm.to(device)
g = g.to(device)

# Model training.
print("Training...")
train(device, A_norm, g.ndata, dataset, model)

# Test the model.
print("Testing...")
acc = validate(device, A_norm, g.ndata, dataset, model, batch_size=2048)
print(f"Test accuracy {acc:.4f}")

0 comments on commit 79d9c8e

Please sign in to comment.