Skip to content

CAS、UnSafe类即Automic并发包

zhpanvip edited this page Mar 7, 2021 · 1 revision

CAS的实现原理

CAS的全称是Compare And Swap 即比较交换,其算法核心思想如下

执行函数:CAS(V,E,N);其包含3个参数:

  • V表示要更新的变量

  • E表示预期值

  • N表示新值

如果V值等于E值,则将V的值设为N。若V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。通俗的理解就是CAS操作需要我们提供一个期望值,当期望值与当前线程的变量值相同时,说明还没线程修改该值,当前线程可以进行修改,也就是执行CAS操作,但如果期望值与当前线程不符,则说明该值已被其他线程修改,此时不执行更新操作,但可以选择重新读取该变量再尝试再次修改该变量,也可以放弃操作,原理图如下

由于CAS操作属于乐观派,它总认为自己可以成功完成操作,当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败,但失败的线程并不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作,这点从图中也可以看出来。基于这样的原理,CAS操作即使没有锁,同样知道其他线程对共享资源操作影响,并执行相应的处理措施。同时从这点也可以看出,由于无锁操作中没有锁的存在,因此不可能出现死锁的情况,也就是说无锁操作天生免疫死锁。

1.什么是原子操作?

假定有两个操作A和B(A和B可能都很复杂),如果从执行A的线程来看,当另一个线程执行B时,要么将B全部执行完,要么完全不执行B,那么A和B对彼此来说是原子的。

2.如何实现原子操作?

实现原子操作可以使用锁,锁机制,满足基本的需求是没有问题的了,但是有的时候我们的需求并非这么简单,我们需要更有效,更加灵活的机制,synchronized关键字是基于阻塞的锁机制,也就是说当一个线程拥有锁的时候,访问同一资源的其它线程需要等待,直到该线程释放锁,

实现原子操作还可以使用当前的处理器基本都支持CAS()的指令,只不过每个厂家所实现的算法并不一样,每一个CAS操作过程都包含三个运算符:一个内存地址V,一个期望的值A和一个新值B,操作的时候如果这个地址上存放的值等于这个期望的值A,则将地址上的值赋为新值B,否则不做任何操作。

CAS的基本思路就是,如果这个地址上的值和期望的值相等,则给其赋予新值,否则不做任何事儿,但是要返回原值是多少。循环CAS就是在一个循环里不断的做cas操作,直到成功为止。

3.CAS实现原子操作的三大问题

  • ABA问题。

因为CAS需要在操作值的时候,检查值有没有发生变化,如果没有发生变化则更新,但是如果一个值原来是A,变成了B,又变成了A,那么使用CAS进行检查时会发现它的值没有发生变化,但是实际上却变化了。

ABA问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么A→B→A就会变成1A→2B→3A。举个通俗点的例子,你倒了一杯水放桌子上,干了点别的事,然后同事把你水喝了又给你重新倒了一杯水,你回来看水还在,拿起来就喝,如果你不管水中间被人喝过,只关心水还在,这就是ABA问题。 如果你是一个讲卫生讲文明的小伙子,不但关心水在不在,还要在你离开的时候水被人动过没有,因为你是程序员,所以就想起了放了张纸在旁边,写上初始值0,别人喝水前麻烦先做个累加才能喝水。

  • 循环时间长开销大。

自旋CAS如果长时间不成功,会给CPU带来非常大的执行开销。

  • 只能保证一个共享变量的原子操作。

当对一个共享变量执行操作时,我们可以使用循环CAS的方式来保证原子操作,但是对多个共享变量操作时,循环CAS就无法保证操作的原子性,这个时候就可以用锁。 还有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如,有两个共享变量i=2,j=a,合并一下ij=2a,然后用CAS来操作ij。从Java 1.5开始,JDK提供了AtomicReference类来保证引用对象之间的原子性,就可以把多个变量放在一个对象里来进行CAS操作。

Unsafe类

Unsafe类存在于sun.misc包中,其内部方法操作可以像C的指针一样直接操作内存,单从名称看来就可以知道该类是非安全的,毕竟Unsafe拥有着类似于C的指针操作,因此总是不应该首先使用Unsafe类,Java官方也不建议直接使用的Unsafe类,据说Oracle正在计划从Java 9中去掉Unsafe类,但我们还是很有必要了解该类,因为Java中CAS操作的执行依赖于Unsafe类的方法,注意Unsafe类中的所有方法都是native修饰的,也就是说Unsafe类中的方法都直接调用操作系统底层资源执行相应任务,关于Unsafe类的主要功能点如下:

1.内存管理,Unsafe类中存在直接操作内存的方法

//分配内存指定大小的内存
public native long allocateMemory(long bytes);
//根据给定的内存地址address设置重新分配指定大小的内存
public native long reallocateMemory(long address, long bytes);
//用于释放allocateMemory和reallocateMemory申请的内存
public native void freeMemory(long address);
//将指定对象的给定offset偏移量内存块中的所有字节设置为固定值
public native void setMemory(Object o, long offset, long bytes, byte value);
//设置给定内存地址的值
public native void putAddress(long address, long x);
//获取指定内存地址的值
public native long getAddress(long address);

//设置给定内存地址的long值
public native void putLong(long address, long x);
//获取指定内存地址的long值
public native long getLong(long address);
//设置或获取指定内存的byte值
public native byte  getByte(long address);
public native void  putByte(long address, byte x);
//其他基本数据类型(long,char,float,double,short等)的操作与putByte及getByte相同

//操作系统的内存页大小
public native int pageSize();

2.提供实例对象新途径。

//传入一个对象的class并创建该实例对象,但不会调用构造方法
public native Object allocateInstance(Class cls) throws InstantiationException;

3.CAS 操作相关

CAS是一些CPU直接支持的指令,也就是我们前面分析的无锁操作,在Java中无锁操作CAS基于以下3个方法实现,在稍后讲解Atomic系列内部方法是基于下述方法的实现的。

//第一个参数o为给定对象,offset为对象内存的偏移量,通过这个偏移量迅速定位字段并设置或获取该字段的值,
//expected表示期望值,x表示要设置的值,下面3个方法都通过CAS原子指令执行操作。
public final native boolean compareAndSwapObject(Object o, long offset,Object expected, Object x);                                                                                                  

public final native boolean compareAndSwapInt(Object o, long offset,int expected,int x);

public final native boolean compareAndSwapLong(Object o, long offset,long expected,long x);

这里还需介绍Unsafe类中JDK 1.8新增的几个方法,它们的实现是基于上述的CAS方法,如下

//1.8新增,给定对象o,根据获取内存偏移量指向的字段,将其增加delta,
 //这是一个CAS操作过程,直到设置成功方能退出循环,返回旧值
 public final int getAndAddInt(Object o, long offset, int delta) {
     int v;
     do {
         //获取内存中最新值
         v = getIntVolatile(o, offset);
       //通过CAS操作
     } while (!compareAndSwapInt(o, offset, v, v + delta));
     return v;
 }

//1.8新增,方法作用同上,只不过这里操作的long类型数据
 public final long getAndAddLong(Object o, long offset, long delta) {
     long v;
     do {
         v = getLongVolatile(o, offset);
     } while (!compareAndSwapLong(o, offset, v, v + delta));
     return v;
 }

 //1.8新增,给定对象o,根据获取内存偏移量对于字段,将其 设置为新值newValue,
 //这是一个CAS操作过程,直到设置成功方能退出循环,返回旧值
 public final int getAndSetInt(Object o, long offset, int newValue) {
     int v;
     do {
         v = getIntVolatile(o, offset);
     } while (!compareAndSwapInt(o, offset, v, newValue));
     return v;
 }

// 1.8新增,同上,操作的是long类型
 public final long getAndSetLong(Object o, long offset, long newValue) {
     long v;
     do {
         v = getLongVolatile(o, offset);
     } while (!compareAndSwapLong(o, offset, v, newValue));
     return v;
 }

 //1.8新增,同上,操作的是引用类型数据
 public final Object getAndSetObject(Object o, long offset, Object newValue) {
     Object v;
     do {
         v = getObjectVolatile(o, offset);
     } while (!compareAndSwapObject(o, offset, v, newValue));
     return v;
 }

4.类和实例对象以及变量的操作,主要方法如下

//获取字段f在实例对象中的偏移量
public native long objectFieldOffset(Field f);
//静态属性的偏移量,用于在对应的Class对象中读写静态属性
public native long staticFieldOffset(Field f);
//返回值就是f.getDeclaringClass()
public native Object staticFieldBase(Field f);


//获得给定对象偏移量上的int值,所谓的偏移量可以简单理解为指针指向该变量的内存地址,
//通过偏移量便可得到该对象的变量,进行各种操作
public native int getInt(Object o, long offset);
//设置给定对象上偏移量的int值
public native void putInt(Object o, long offset, int x);

//获得给定对象偏移量上的引用类型的值
public native Object getObject(Object o, long offset);
//设置给定对象偏移量上的引用类型的值
public native void putObject(Object o, long offset, Object x);
//其他基本数据类型(long,char,byte,float,double)的操作与getInthe及putInt相同

//设置给定对象的int值,使用volatile语义,即设置后立马更新到内存对其他线程可见
public native void  putIntVolatile(Object o, long offset, int x);
//获得给定对象的指定偏移量offset的int值,使用volatile语义,总能获取到最新的int值。
public native int getIntVolatile(Object o, long offset);

//其他基本数据类型(long,char,byte,float,double)的操作与putIntVolatile及getIntVolatile相同,引用类型putObjectVolatile也一样。

//与putIntVolatile一样,但要求被操作字段必须有volatile修饰
public native void putOrderedInt(Object o,long offset,int x);

并发包中的原子操作类

子更新基本类型主要包括3个类:

  • AtomicBoolean:原子更新布尔类型
  • AtomicInteger:原子更新整型
  • AtomicLong:原子更新长整型

这3个类的实现原理和使用方式几乎是一样的,这里我们以AtomicInteger为例进行分析,AtomicInteger主要是针对int类型的数据执行原子操作,它提供了原子自增方法、原子自减方法以及原子赋值方法等.

public class AtomicInteger extends Number implements java.io.Serializable {
    private static final long serialVersionUID = 6214790243416807050L;

    // 获取指针类Unsafe
    private static final Unsafe unsafe = Unsafe.getUnsafe();

    //下述变量value在AtomicInteger实例对象内的内存偏移量
    private static final long valueOffset;

    static {
        try {
           //通过unsafe类的objectFieldOffset()方法,获取value变量在对象内存中的偏移
           //通过该偏移量valueOffset,unsafe类的内部方法可以获取到变量value对其进行取值或赋值操作
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }
   //当前AtomicInteger封装的int变量value
    private volatile int value;

    public AtomicInteger(int initialValue) {
        value = initialValue;
    }
    public AtomicInteger() {
    }
   //获取当前最新值,
    public final int get() {
        return value;
    }
    //设置当前值,具备volatile效果,方法用final修饰是为了更进一步的保证线程安全。
    public final void set(int newValue) {
        value = newValue;
    }
    //最终会设置成newValue,使用该方法后可能导致其他线程在之后的一小段时间内可以获取到旧值,有点类似于延迟加载
    public final void lazySet(int newValue) {
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }
   //设置新值并获取旧值,底层调用的是CAS操作即unsafe.compareAndSwapInt()方法
    public final int getAndSet(int newValue) {
        return unsafe.getAndSetInt(this, valueOffset, newValue);
    }
   //如果当前值为expect,则设置为update(当前值指的是value变量)
    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }
    //当前值加1返回旧值,底层CAS操作
    public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }
    //当前值减1,返回旧值,底层CAS操作
    public final int getAndDecrement() {
        return unsafe.getAndAddInt(this, valueOffset, -1);
    }
   //当前值增加delta,返回旧值,底层CAS操作
    public final int getAndAdd(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta);
    }
    //当前值加1,返回新值,底层CAS操作
    public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }
    //当前值减1,返回新值,底层CAS操作
    public final int decrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
    }
   //当前值增加delta,返回新值,底层CAS操作
    public final int addAndGet(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
    }
   //省略一些不常用的方法....
}

通过上述的分析,可以发现AtomicInteger原子类的内部几乎是基于前面分析过Unsafe类中的CAS相关操作的方法实现的,这也同时证明AtomicInteger是基于无锁实现的,这里重点分析自增操作实现过程,其他方法自增实现原理一样。

参考链接:https://blog.csdn.net/javazejian/article/details/72772470

公众号:玩转安卓Dev

Java基础

面向对象与Java基础知识

Java集合框架

JVM

多线程与并发

设计模式

Kotlin

Android

Android基础知识

Android消息机制

Framework

View事件分发机制

Android屏幕刷新机制

View的绘制流程

Activity启动

性能优化

Jetpack&系统View

第三方框架实现原理

计算机网络

算法

其它

Clone this wiki locally